login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083334 a(n) = 12*a(n-2) - 25*a(n-4). 2
1, 6, 17, 47, 179, 414, 1723, 3793, 16201, 35166, 151337, 327167, 1411019, 3046854, 13148803, 28383073, 122510161, 264425526, 1141401857, 2463529487, 10634068259, 22951715694, 99073772683, 213832351153, 923033565721 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n)/A083335(n) converges to sqrt(11).

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0, 12, 0, -25).

FORMULA

G.f.: (1+6*x+5*x^2-25*x^3) / (1-12*x^2+25*x^4)

a(n+1) = x^n + (-1)^n(x-2)^n where x = 1 + sqrt(11) then divided by 2^(ceil(.5n)). - Ben Paul Thurston, Aug 30 2006

MATHEMATICA

CoefficientList[Series[(1+6x+5x^2-25x^3)/(1-12x^2+25x^4), {x, 0, 10}], x]

LinearRecurrence[{0, 12, 0, -25}, {1, 6, 17, 47}, 30] (* Harvey P. Dale, Oct 15 2012 *)

CROSSREFS

Sequence in context: A026382 A054492 A128525 * A199113 A297297 A241352

Adjacent sequences:  A083331 A083332 A083333 * A083335 A083336 A083337

KEYWORD

easy,nonn

AUTHOR

Mario Catalani (mario.catalani(AT)unito.it), Apr 26 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 13:06 EDT 2019. Contains 321497 sequences. (Running on oeis4.)