This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083323 a(n) = 3^n - 2^n + 1. 8
 1, 2, 6, 20, 66, 212, 666, 2060, 6306, 19172, 58026, 175100, 527346, 1586132, 4766586, 14316140, 42981186, 129009092, 387158346, 1161737180, 3485735826, 10458256052, 31376865306, 94134790220, 282412759266, 847255055012 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A000225 (if this starts 1,1,3,7....). Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 1) x = y. - Ross La Haye, Jan 10 2008 Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if either 0) x is not a subset of y and y is not a subset of x and x and y are disjoint, or 1) x equals y. Then a(n) = |R|. - Ross La Haye, Mar 19 2009 LINKS M. H. Albert, M. D. Atkinson, and V. Vatter, Inflations of geometric grid classes: three case studies, arXiv:1209.0425 [math.CO], 2012. Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6. Jay Pantone, The Enumeration of Permutations Avoiding 3124 and 4312, arXiv:1309.0832 [math.CO], 2013. Index entries for linear recurrences with constant coefficients, signature (6,-11,6). FORMULA G.f.: (1-4*x+5*x^2)/((1-x)*(1-2*x)*(1-3*x)). E.g.f.: exp(3*x) - exp(2*x) + exp(x). Row sums of triangle A134319. - Gary W. Adamson, Oct 19 2007 a(n) = 2*StirlingS2(n+1,3) + StirlingS2(n+1,2) + 1. - Ross La Haye, Jan 10 2008 a(n) = Sum_{k=0..n}(binomial(n,k)*A255047(k)). - Yuchun Ji, Feb 23 2019 MATHEMATICA LinearRecurrence[{6, -11, 6}, {1, 2, 6}, 30] (* G. C. Greubel, Feb 13 2019 *) PROG (PARI) a(n)=3^n-2^n+1 \\ Charles R Greathouse IV, Oct 07 2015 (MAGMA) [3^n-2^n+1: n in [0..30]]; // G. C. Greubel, Feb 13 2019 (Sage) [3^n-2^n+1 for n in range(30)] # G. C. Greubel, Feb 13 2019 (GAP) List([0..30], n -> 3^n-2^n+1); # G. C. Greubel, Feb 13 2019 CROSSREFS Cf. A134319, A028243, A000079. Sequence in context: A156831 A027061 A279460 * A174846 A111285 A052991 Adjacent sequences:  A083320 A083321 A083322 * A083324 A083325 A083326 KEYWORD nonn,easy,changed AUTHOR Paul Barry, Apr 27 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 04:18 EST 2019. Contains 320371 sequences. (Running on oeis4.)