login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083309 a(n) is the number of times that sums 3+-5+-7+-11+-...+-prime(2n+1) of the first 2n odd primes is zero. There are 2^(2n-1) choices for the sign patterns. 27
0, 0, 1, 2, 7, 19, 63, 197, 645, 2172, 7423, 25534, 89218, 317284, 1130526, 4033648, 14515742, 52625952, 191790090, 702333340, 2585539586, 9570549372, 35562602950, 131774529663, 491713178890, 1842214901398, 6909091641548 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

The frequency of each possible sum is computed by the Mathematica program without explicitly computing the individual sums. Let S = 3+5+7+...+Prime(2n+1). Because the primes do not grow very fast, it is easy to show that, for n > 2, all even numbers between -S+20 and S-20 occur at least once as a sum.

a(n) is the maximal number of subsets of {prime(2), prime(3),..., prime(n+1)} that share the same sum. Cf. A025591, A083527.

See A238894 for a more general sequence that looks at all sums formed. - T. D. Noe, Mar 07 2014

LINKS

T. D. Noe and Ray Chandler, Table of n, a(n) for n = 1..1000 (first 100 terms from T. D. Noe)

T. D. Noe, Extremal Sums of Sequences

FORMULA

a(n) = A022897(2n). - M. F. Hasler, Aug 08 2015

EXAMPLE

a(3) = 1 because there is only one sign pattern of the first six odd primes that yields zero: 3+5+7-11+13-17.

MATHEMATICA

d={1, 0, 0, 1}; nMax=32; zeroLst={}; Do[p=Prime[n+1]; d=PadLeft[d, Length[d]+p]+PadRight[d, Length[d]+p]; If[0==Mod[n, 2], AppendTo[zeroLst, d[[(Length[d]+1)/2]]]], {n, 2, nMax}]; zeroLst/2

PROG

(PARI) A083309(n, rhs=0, firstprime=2)={rhs-=prime(firstprime); my(p=vector(2*n-2+bittest(rhs, 0), i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose, too slow for n >> 10. - M. F. Hasler, Aug 08 2015

CROSSREFS

Cf. A015818, A063865, A238894.

Cf. A022894 (use all primes in the sum), A022895 (r.h.s. = 1), A022896 (r.h.s. = 2), A022897 (interleaved 0 for odd number of terms), ..., A022903 (using primes >= 7), A022904, A022920; A261061 - A261063 and A261044 (r.h.s. = -1); A261057, A261059, A261060, A261045 (r.h.s. = -2).

Sequence in context: A091024 A275289 A151430 * A318264 A164979 A243279

Adjacent sequences:  A083306 A083307 A083308 * A083310 A083311 A083312

KEYWORD

nonn

AUTHOR

T. D. Noe, Apr 29 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 17:13 EDT 2019. Contains 327311 sequences. (Running on oeis4.)