login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083296 a(n) = (4*3^n + (-7)^n)/5. 4
1, 1, 17, -47, 545, -3167, 24113, -162959, 1158209, -8054975, 56542289, -395323631, 2768682593, -19376526623, 135648440945, -949500822863, 6646620551297, -46525999485311, 325683029518481, -2279778107265455, 15958456048949921, -111709164448374239 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Binomial transform of A083295.

REFERENCES

K. H. Rosen, Handbook of Discrete and Combinatorial Mathematics, CRC Press LLC, 2000, p. 182 (example 9).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

Index entries for linear recurrences with constant coefficients, signature (-4,21).

FORMULA

G.f.: (1+5*x)/((1-3*x)*(1+7*x)).

E.g.f.: (4*exp(3*x) + exp(-7*x))/5.

MATHEMATICA

Table[[(4*3^n+(-7)^n)/5], {n, 0, 21}] (* Bruno Berselli, Dec 06 2011 *)

LinearRecurrence[{-4, 21}, {1, 1}, 30] (* Harvey P. Dale, Dec 13 2015 *)

PROG

(MAGMA) [(4*3^n+(-7)^n)/5: n in [0..30]]; // Vincenzo Librandi, Jun 08 2011

(Maxima) a[0]:1$ a[1]:1$ a[n]:=-4*a[n-1]+21*a[n-2]$ makelist(a[n], n, 0, 21);  /* _Bruno Berselli, Dec 06 2011 */

(PARI) a(n)=(4*3^n+(-7)^n)/5 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A083297.

Sequence in context: A229448 A155841 A147058 * A159850 A031122 A051869

Adjacent sequences:  A083293 A083294 A083295 * A083297 A083298 A083299

KEYWORD

sign,easy

AUTHOR

Paul Barry, Apr 24 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 09:33 EST 2019. Contains 329843 sequences. (Running on oeis4.)