login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = (3*10^n + 2^n)/4.
4

%I #17 Sep 08 2022 08:45:10

%S 1,8,76,752,7504,75008,750016,7500032,75000064,750000128,7500000256,

%T 75000000512,750000001024,7500000002048,75000000004096,

%U 750000000008192,7500000000016384,75000000000032768,750000000000065536

%N a(n) = (3*10^n + 2^n)/4.

%C Binomial transform of A066443.

%H Vincenzo Librandi, <a href="/A083234/b083234.txt">Table of n, a(n) for n = 0..300</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12,-20).

%F a(n) = (3*10^n + 2^n)/4.

%F G.f.: (1-4*x)/((1-10*x)*(1-2*x)).

%F E.g.f.: (3*exp(10*x) + exp(2*x))/4.

%F a(n) = 12*a(n-1)-20*a(n-2). - _Wesley Ivan Hurt_, Apr 24 2021

%t Table[(3*10^n + 2^n)/4, {n, 0, 20}] (* _Wesley Ivan Hurt_, Apr 24 2021 *)

%o (Magma)[(3*10^n+2^n)/4: n in [0..25]]; // _Vincenzo Librandi_, Jun 29 2011

%o (PARI) a(n)=(3*10^n+2^n)/4 \\ _Charles R Greathouse IV_, Jun 29 2011

%Y Cf. A066443, A082724.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Apr 23 2003