Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #9 Jul 08 2023 14:14:03
%S 8,12,105,1331,10013,100181,1030301,10000127,100000727,1027243729,
%T 10000002797,100000000757,1002101470343,10000000000493,
%U 100000000005643,1000090002700027,10000000000001251,100000000000000649
%N Least 3-brilliant number of size n.
%C Brilliant numbers, as defined by Peter Wallrodt, are numbers with two prime factors of the same length (in decimal notation). These numbers are generally used for cryptographic purposes and for testing the performance of prime factoring programs.
%C a(3n+1) will always be the cube of the least prime greater than 10^n.
%C 2-brilliant numbers are A078972. 3-brilliant numbers addressed in A083128 and A083182. The sum of all 1, 2 and 3-digit 2-brilliant numbers is a 3-brilliant number. 37789 = 23 * 31 * 53 = 4 + 6 + 9 + 10 + 14 + 15 + 21 + 25 + 35 + 49 + 121 + 143 + 169 + 187 + 209 + 221 + 247 + 253 + 289 + 299 + 319 + 323 + 341 + 361 + 377 + 391 + 403 + 407 + 437 + 451 + 473 + 481 + 493 + 517 + 527 + 529 + 533 + 551 + 559 + 583 + 589 + 611 + 629 + 649 + 667 + 671 + 689 + 697 + 703 + 713 + 731 + 737 + 767 + 779 + 781 + 793 + 799 + 803 + 817 + 841 + 851 + 869 + 871 + 893 + 899 + 901 + 913 + 923 + 943 + 949 + 961 + 979 + 989 - _Jonathan Vos Post_, Jun 17 2007
%H Dario Alpern, <a href="https://www.alpertron.com.ar/BRILLIANT.HTM">Brilliant numbers</a>
%e a(5) = 10013 = 17 * 19 * 31 and there is no lesser number of five digits which has three prime factors, not necessarily different, of the same size in decimal notation.
%Y Cf. A083182.
%Y Cf. A078972, A083128, A083182.
%K nonn,base
%O 1,1
%A _Robert G. Wilson v_, May 11 2003