login
A083124
Continued fraction expansion of tanh(Pi/2).
4
0, 1, 11, 14, 4, 1, 1, 1, 3, 1, 295, 4, 4, 1, 5, 17, 2, 8, 2, 15, 3, 1, 1, 1, 5, 54, 4, 1, 2, 1, 1, 16, 2, 2, 2, 5, 1, 1, 2, 1, 82, 1, 6, 1, 1, 1, 1, 3, 1, 1, 4, 1, 3, 3, 1, 5, 1, 1, 1, 282, 1, 5, 1, 1, 1, 1, 2, 10, 2, 1, 39, 1, 1, 5, 2, 1, 6, 4, 1, 22, 1, 1, 6, 1, 3, 5, 3, 1, 2, 9, 1, 3, 6, 23, 1, 1, 1, 14, 2
OFFSET
0,3
REFERENCES
J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 11.
MAPLE
with(numtheory): c := cfrac (tanh(Pi/2), 300, 'quotients');
MATHEMATICA
ContinuedFraction[Tanh[Pi/2], 100] (* Paolo Xausa, Jul 04 2024 *)
PROG
(PARI) contfrac(tanh(Pi/2)) \\ Michel Marcus, Apr 11 2021
CROSSREFS
Cf. A060402.
Sequence in context: A257135 A357046 A100332 * A132991 A031167 A357937
KEYWORD
nonn,cofr,easy
AUTHOR
N. J. A. Sloane, Jun 02 2003
STATUS
approved