login
Numbers that are congruent to {0, 2, 4, 5, 7, 9, 10} mod 12.
15

%I #44 Nov 06 2023 18:13:17

%S 0,2,4,5,7,9,10,12,14,16,17,19,21,22,24,26,28,29,31,33,34,36,38,40,41,

%T 43,45,46,48,50,52,53,55,57,58,60,62,64,65,67,69,70,72,74,76,77,79,81,

%U 82,84,86,88,89,91,93,94,96,98,100,101,103,105,106,108,110

%N Numbers that are congruent to {0, 2, 4, 5, 7, 9, 10} mod 12.

%C Key-numbers of the pitches of a Mixolydian mode scale on a standard chromatic keyboard, with root = 0. A Mixolydian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone G.

%H Vincenzo Librandi, <a href="/A083120/b083120.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,1,-1).

%F G.f.: x^2*(2 + 2*x + x^2 + 2*x^3 + 2*x^4 + x^5 + 2*x^6)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - _R. J. Mathar_, Oct 08 2011

%F From _Wesley Ivan Hurt_, Jul 20 2016: (Start)

%F a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.

%F a(n) = (84*n - 77 + 5*(n mod 7) - 2*((n + 1) mod 7) - 2*((n + 2) mod 7) + 5*((n + 3) mod 7) - 2*((n + 4) mod 7) - 2*((n + 5) mod 7) - 2*((n + 6) mod 7))/49.

%F a(7k) = 12k - 2, a(7k-1) = 12k - 3, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k-4) = 12k - 8, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)

%F a(n) = a(n-7) + 12 for n > 7. - _Jianing Song_, Sep 22 2018

%F a(n) = floor(4 * (3*n - 2) / 7). _Federico Provvedi_, Nov 06 2023

%p A083120:= n-> 12*floor((n-1)/7)+[0, 2, 4, 5, 7, 9, 10][((n-1) mod 7)+1]:

%p seq(A083120(n), n=1..100); # _Wesley Ivan Hurt_, Jul 20 2016

%t Select[Range[0,120], MemberQ[{0,2,4,5,7,9,10}, Mod[#,12]]&] (* _Harvey P. Dale_, Feb 20 2011 *)

%t LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 4, 5, 7, 9, 10, 12}, 70] (* _Jianing Song_, Sep 22 2018 *)

%t Quotient[4 (3 # - 2), 7] & /@ Range[96] (* _Federico Provvedi_, Nov 06 2023 *)

%o (Magma) [n : n in [0..150] | n mod 12 in [0, 2, 4, 5, 7, 9, 10]]; // _Wesley Ivan Hurt_, Jul 20 2016

%o (PARI) a(n)=[-2, 0, 2, 4, 5, 7, 9][n%7+1] + n\7*12 \\ _Charles R Greathouse IV_, Jul 21 2016

%o (PARI) my(x='x+O('x^99)); concat(0, Vec(x^2*(2+2*x+x^2+2*x^3+2*x^4+x^5+2*x^6)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ _Jianing Song_, Sep 22 2018

%Y A guide for some sequences related to modes and chords:

%Y Modes:

%Y Lydian mode (F): A083089

%Y Ionian mode (C): A083026

%Y Mixolydian mode (G): this sequence

%Y Dorian mode (D): A083033

%Y Aeolian mode (A): A060107 (raised seventh: A083028)

%Y Phrygian mode (E): A083034

%Y Locrian mode (B): A082977

%Y Chords:

%Y Major chord: A083030

%Y Minor chord: A083031

%Y Dominant seventh chord: A083032

%K nonn,easy

%O 1,2

%A James Ingram (j.ingram(AT)t-online.de), Jun 01 2003