login
A083102
a(n) = 2*a(n-1) + 10*a(n-2).
11
1, 2, 14, 48, 236, 952, 4264, 18048, 78736, 337952, 1463264, 6306048, 27244736, 117549952, 507547264, 2190594048, 9456660736, 40819261952, 176205131264, 760602882048, 3283257076736, 14172542973952, 61177656715264
OFFSET
0,2
COMMENTS
a(n+1) = a(n) + A083101(n). A083101(n)/a(n) converges to sqrt(11).
Antidiagonals of A038207. - Mark Dols, Aug 31 2009
Numerators of stationary probabilities for M2/M/1 queue system. In this queue, customers arrive in groups of 2. Intensity of arrival = 2. Service rate = 5. There is only one server and an infinite queue. - Igor Kleiner, Nov 02 2018
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
FORMULA
G.f.: 1/(1-2*x-10*x^2).
From Paul Barry, Sep 29 2004: (Start)
E.g.f.: exp(x) * sinh(sqrt(11)*x) / sqrt(11).
a(n) = Sum_{k=0..n} binomial(n,2*k+1) * 11^k. (End)
a(n) = ((1+sqrt(11))^n - (1-sqrt(11))^n)/(2*sqrt(11)). - Rolf Pleisch, Jul 06 2009
G.f.: G(0)/(2-2*x), where G(k)= 1 + 1/(1 - x*(11*k-1)/( x*(11*k+10) - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 14 2013
G.f.: Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k+2 + 10*x )/( x*(4*k+4 + 10*x ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 21 2013
MATHEMATICA
CoefficientList[Series[1/(1-2x-10x^2), {x, 0, 25}], x]
LinearRecurrence[{2, 10}, {1, 2}, 30] (* G. C. Greubel, Jan 08 2018 *)
PROG
(Sage) [lucas_number1(n, 2, -10) for n in range(1, 24)] # Zerinvary Lajos, Apr 22 2009
(PARI) x='x+O('x^30); Vec(1/(1-2*x-10*x^2)) \\ G. C. Greubel, Jan 08 2018
(Magma) I:=[1, 2]; [n le 2 select I[n] else 2*Self(n-1) + 10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
CROSSREFS
Sequence in context: A197885 A200193 A188571 * A270666 A330544 A056080
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003
STATUS
approved