OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = 8*n^3 + 28*n^2 + 26*n + 1 = (n*(2n+3)^3 + 1)/(n+1).
G.f.: (1 + 59*x - 17*x^2 + 5*x^3)/(1-x)^4. - Harvey P. Dale, May 14 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=63, a(2)=229, a(3)=547. - Harvey P. Dale, May 14 2011
MATHEMATICA
Table[8 n^3 + 28 n^2 + 26 n + 1, {n, 0, 40}] (* or *) LinearRecurrence[ {4, -6, 4, -1}, {1, 63, 229, 547}, 40] (* Harvey P. Dale, May 14 2011 *)
PROG
(Magma) [8*n^3+28*n^2+26*n+1: n in [0..30]]; // Vincenzo Librandi, Nov 12 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 23 2003
STATUS
approved