This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083006 Numbers k such that Sum_{j=0..k-1} Bernoulli(j)*binomial(k,j)^2 is an integer. 0
 0, 1, 2, 3, 4, 6, 8, 10, 12, 24, 28, 30, 36, 40, 60, 108, 120 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Next term, if it exists, is > 2500. No further terms up to 5000. - Harvey P. Dale, Nov 14 2011 LINKS MAPLE p:=proc(n) if type(add(bernoulli(k)*binomial(n, k)^2, k=0..n-1), integer) then n else fi end: seq(p(n), n=0..200); # Emeric Deutsch, Mar 19 2005 MATHEMATICA Select[Range[0, 150], IntegerQ[Sum[BernoulliB[k]Binomial[#, k]^2, {k, 0, #-1}]]&] (* Harvey P. Dale, Nov 14 2011 *) CROSSREFS Sequence in context: A061953 A029517 A177907 * A096061 A100919 A184109 Adjacent sequences:  A083003 A083004 A083005 * A083007 A083008 A083009 KEYWORD more,nonn AUTHOR Benoit Cloitre, May 31 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 13:18 EDT 2019. Contains 321345 sequences. (Running on oeis4.)