login
A082968
a(n)=sum(k=1,n, k mod sum(i=0,k-1,1-t(i))) where t(i)=A010060(i) is the Thue-Morse sequence.
0
0, 0, 0, 0, 1, 1, 4, 4, 5, 5, 10, 10, 16, 16, 17, 17, 18, 18, 27, 27, 37, 37, 38, 38, 50, 50, 51, 51, 52, 52, 67, 67, 68, 68, 85, 85, 103, 103, 104, 104, 124, 124, 125, 125, 126, 126, 149, 149, 173, 173, 174, 174, 175, 175, 202, 202, 203, 203, 232, 232, 262, 262, 263, 263
OFFSET
1,7
FORMULA
Despite the definition, a(n) has an unexpectedly simple asymptotic behavior h: a(n)=(n/4)^2 +O(n) and more precisely it appears that : (n/4)^2-n/8 <= a(n) < (n/4)^2+n/2 with equality (on left side) for infinitely many values of n.
PROG
(PARI) a(n)=sum(k=1, n, k%sum(i=0, k-1, 1-subst(Pol(binary(i)), x, 1)%2))
CROSSREFS
Sequence in context: A257291 A152465 A357414 * A136013 A232172 A114884
KEYWORD
nonn
AUTHOR
Benoit Cloitre, May 27 2003
STATUS
approved