This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082920 Squares that are the sum of four factorials. 1
 4, 9, 16, 169, 361, 729, 961, 1444, 10201, 403225, 725904 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS EXAMPLE These appear to be the only solutions to a! + b! + c! + d! = n^2: a b c d n 0 0 0 0 4 0 0 0 1 4 0 0 0 3 9 0 0 1 1 4 0 0 1 3 9 0 1 1 1 4 0 1 1 3 9 0 2 3 6 729 0 4 4 5 169 0 4 8 9 403225 0 5 5 5 361 0 5 5 6 961 0 5 7 7 10201 1 1 1 1 4 1 1 1 3 9 1 2 3 6 729 1 4 4 5 169 1 4 8 9 403225 1 5 5 5 361 1 5 5 6 961 1 5 7 7 10201 2 2 3 3 16 2 2 6 6 1444 4 5 9 9 725904 1!+2!+3!+6! = 729 = 27^2. This shows that 4 factorials can add to a cube. MATHEMATICA e = 75; a = Union[ Flatten[ Table[a! + b! + c! + d!, {a, 1, e}, {b, a, e}, {c, b, e}, {d, c, e}]]]; l = Length[a]; Do[ If[ IntegerQ[ Sqrt[ a[[i]] ]], Print[ a[[i]] ]], {i, 1, l}] Select[Union[Total/@Tuples[Range[10]!, 4]], IntegerQ[Sqrt[#]]&] (* Harvey P. Dale, Aug 23 2014 *) PROG (PARI) sum4factsq(n) = { for(a1=0, n, for(a2=a1, n, for(a3=a2, n, for(a4=a3, n, z = a1!+a2!+a3!+a4!; if(issquare(z), print(a1" "a2" "a3" "a4" "z)) ) ) ) ) } CROSSREFS Cf. A082875. Sequence in context: A226354 A299921 A089149 * A204434 A110979 A073173 Adjacent sequences:  A082917 A082918 A082919 * A082921 A082922 A082923 KEYWORD easy,nonn AUTHOR Cino Hilliard, May 25 2003 EXTENSIONS Edited, corrected and extended by Robert G. Wilson v, May 26 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 07:00 EDT 2019. Contains 324183 sequences. (Running on oeis4.)