The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082867 Numbers n such that there exists a divisor m where m divides n and m+1 divides n+1, but there is no divisor d such that d divides n, d+1 divides n+1 and d+2 divides n+2. 1
 8, 15, 20, 24, 27, 32, 35, 39, 44, 48, 51, 56, 65, 68, 75, 80, 84, 87, 90, 92, 95, 99, 104, 111, 116, 119, 120, 125, 128, 132, 135, 140, 143, 144, 147, 152, 155, 159, 164, 168, 171, 175, 176, 185, 188, 189, 195, 200, 204, 207, 212, 216, 219, 224, 231, 236, 245 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 EXAMPLE 8 is a member because 2 divides 8, 3 divides 9 (and 4 does not divide 10). PROG (C++) unsigned long a, b; int max, listlength, maxOrder, order, count; char ch; // no mathematical use cin >> max; // input cin >> listLength; for (int n = 1; n <= max; n++) { cout << n << ' '; // output of list number count = 0; a = 1; while ((count <= listLength)&&(a < 4294967295)) { maxOrder = 0; for(b=2; b < a; b++) { order = 1; while( (a%b==0)&&((a+order)%(b+order)==0)) order = order+1; order = order - 1; if(order > maxOrder) maxOrder = order; } if(maxOrder == n) { cout << a << ", "; // output of one list count++; } a++; } cout << ' '; cin >> ch; // used for holding the screen } CROSSREFS Cf. A082772. Sequence in context: A014544 A237610 A122754 * A075713 A274290 A328410 Adjacent sequences:  A082864 A082865 A082866 * A082868 A082869 A082870 KEYWORD easy,nonn AUTHOR Anne M. Donovan (anned3005(AT)aol.com), May 24 2003 EXTENSIONS Corrected by T. D. Noe, Oct 25 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 04:15 EDT 2020. Contains 334859 sequences. (Running on oeis4.)