login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082864 Decimal expansion of (-1)*c(2) where, in a neighborhood of zero, Gamma(x) = 1/x + c(0) + c(1)*x + c(2)*x^2 + ... (Gamma(x) denotes the Gamma function). 1
2, 4, 2, 3, 4, 5, 4, 5, 2, 2, 2, 7, 3, 6, 0, 9, 4, 9, 7, 6, 2, 2, 9, 3, 6, 2, 8, 4, 6, 0, 6, 7, 1, 4, 8, 3, 8, 3, 8, 8, 9, 2, 2, 1, 5, 7, 9, 1, 1, 8, 9, 2, 4, 0, 4, 8, 7, 4, 4, 4, 4, 0, 5, 5, 3, 3, 1, 5, 3, 1, 3, 1, 1, 7, 3, 6, 9, 4, 8, 3, 6, 9, 1, 1, 5, 1, 7, 0, 1, 3, 5, 6, 3, 0, 1, 0, 2, 5, 6, 2, 5, 7, 8, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

S. J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

FORMULA

c(2) = (EulerGamma^3 - 3*EulerGamma*zeta(2) + zeta(3))/6 = -0.24234545222... ( where EulerGamma is the Euler-Mascheroni constant (A001620)).

EXAMPLE

0.2423454522273609497622936284606714838388922157911892404874444...

MATHEMATICA

RealDigits[-(EulerGamma^3 - 3*EulerGamma*Zeta[2] + Zeta[3])/6, 10, 100][[1]] (* G. C. Greubel, Sep 05 2018 *)

PROG

(PARI) -(Euler^3-3*Euler*zeta(2)+zeta(3))/6

(MAGMA) SetDefaultRealField(RealField(100)); L:=RiemannZeta(); R:= RealField(); -(EulerGamma(R)^3 - 3*EulerGamma(R)*Evaluate(L, 2) + Evaluate(L, 3))/6; // G. C. Greubel, Sep 05 2018

CROSSREFS

Cf. A013661 (zeta(2)), A002117 (zeta(3)), A001620 (Euler-Mascheroni constant).

Sequence in context: A320156 A054240 A182817 * A134447 A093056 A271320

Adjacent sequences:  A082861 A082862 A082863 * A082865 A082866 A082867

KEYWORD

cons,nonn

AUTHOR

Benoit Cloitre, May 24 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 13:19 EST 2019. Contains 329336 sequences. (Running on oeis4.)