login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082851 Partial sums of A082850. 3
1, 2, 4, 5, 6, 8, 11, 12, 13, 15, 16, 17, 19, 22, 26, 27, 28, 30, 31, 32, 34, 37, 38, 39, 41, 42, 43, 45, 48, 52, 57, 58, 59, 61, 62, 63, 65, 68, 69, 70, 72, 73, 74, 76, 79, 83, 84, 85, 87, 88, 89, 91, 94, 95, 96, 98, 99, 100, 102, 105, 109, 114, 120, 121, 122, 124, 125, 126 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

It seems that n/(2n-a(n)) is an integer for infinitely many values of n, see A082396.

LINKS

Table of n, a(n) for n=1..68.

FORMULA

Limit n->infinity a(n)/n = 2. Is (2-a(n)/n)*sqrt(n)*log(n) bounded?

MAPLE

A082850 := proc(n) option remember ; local m ; if n <= 3 then op(n, [1, 1, 2]) ; else m := ilog2(n+1) ; if n = 2^m -1 then m; else m := ilog2(n) ; return procname(n+1-2^m) ; end if ; end if; end proc:

A082851 := proc(n) add( A082850(i), i=1..n) ; end proc: seq(A082851(n), n=1..100) ; # R. J. Mathar, Nov 17 2009

CROSSREFS

Sequence in context: A059916 A099747 A249053 * A091207 A284525 A099247

Adjacent sequences:  A082848 A082849 A082850 * A082852 A082853 A082854

KEYWORD

nonn,easy

AUTHOR

Benoit Cloitre, Apr 14 2003

EXTENSIONS

Minor edits by R. J. Mathar, Nov 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 04:44 EST 2019. Contains 329248 sequences. (Running on oeis4.)