login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082850 Let S(0) = {}, S(n) = {S(n-1), S(n-1), n}; sequence gives S(infinity). 5
1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 5, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 5, 6, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 4, 5, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Sequence counts up to successive values of A001511; i.e. apply the morphism k -> 1,2,...,k to A001511. If all 1's are removed from the sequence, the resulting sequence b has b(n) = a(n)+1. A101925 is the positions of 1's in this sequence.

LINKS

Table of n, a(n) for n=1..105.

FORMULA

a(2^m-1)=m

a(2^m-1) = m. If n = 2^m-1 + k, with 0 < k < 2^m, then a(n) = a(k). - Franklin T. Adams-Watters, Aug 16 2006

a(n) = log_2(A182105(n)) + 1. - Laurent Orseau, Jun 18 2019

EXAMPLE

S(1) = {1}, S(2) = {1,1,2}, S(3) = {1,1,2,1,1,2,3}, etc.

MATHEMATICA

Fold[Flatten[{#1, #1, #2}] &, {}, Range[5]] (* Birkas Gyorgy, Apr 13 2011 *)

Flatten[Table[Length@Last@Split@IntegerDigits[2 n, 2], {n, 20}] /. {n_ ->Range[n]}] (* Birkas Gyorgy, Apr 13 2011 *)

CROSSREFS

Cf. A082851 (partial sums).

Cf. A001511, A101925.

Sequence in context: A116361 A106796 A265743 * A290695 A277446 A088198

Adjacent sequences:  A082847 A082848 A082849 * A082851 A082852 A082853

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Apr 14 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 13:24 EDT 2019. Contains 328299 sequences. (Running on oeis4.)