The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082756 Larger of a pair of consecutive primes having only prime digits. 2
 3, 5, 7, 227, 733, 3257, 3733, 5237, 5333, 7577, 7727, 7757, 22277, 23333, 25537, 27737, 32237, 32327, 32537, 35327, 35537, 37273, 37277, 52237, 52733, 53327, 53353, 53777, 55337, 72227, 72733, 75227, 75533, 75557, 222533, 222553, 222557, 223277, 223757, 225227 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Michael S. Branicky, Table of n, a(n) for n = 1..10000 EXAMPLE 227 is a term as the previous prime 223 also has only prime digits. MATHEMATICA NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 0; q = 1; pd = {1}; Do[p = q; pd = qd; q = NextPrim[p]; qd = Union[ Join[{2, 3, 5, 7}, IntegerDigits[q]]]; If[pd == qd == {2, 3, 5, 7}, Print[q]], {n, 1, 20000}] Transpose[Select[Partition[Prime[Range[20000]], 2, 1], And@@PrimeQ[ Flatten[ IntegerDigits/@#]]&]] [[2]] (* Harvey P. Dale, Jul 19 2011 *) PROG (Python) from sympy import nextprime, isprime from itertools import count, islice, product def onlypd(n): return set(str(n)) <= set("2357") def agen(): yield from [3, 5, 7] for digits in count(2): for p in product("2357", repeat=digits-1): for end in "37": t = int("".join(p) + end) if isprime(t): t2 = nextprime(t) if onlypd(t2): yield t2 print(list(islice(agen(), 40))) # Michael S. Branicky, Mar 11 2022 CROSSREFS Cf. A019546, A082755. Sequence in context: A088092 A174271 A211678 * A268693 A068832 A046472 Adjacent sequences: A082753 A082754 A082755 * A082757 A082758 A082759 KEYWORD base,nonn AUTHOR Amarnath Murthy, Apr 18 2003 EXTENSIONS Edited and extended by Robert G. Wilson v, Apr 22 2003 a(38) and beyond from Michael S. Branicky, Mar 11 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 9 08:04 EST 2023. Contains 360153 sequences. (Running on oeis4.)