The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082755 Smaller of a pair of consecutive primes having only prime digits. 4
 2, 3, 5, 223, 727, 3253, 3727, 5233, 5323, 7573, 7723, 7753, 22273, 23327, 25523, 27733, 32233, 32323, 32533, 35323, 35533, 37253, 37273, 52223, 52727, 53323, 53327, 53773, 55333, 72223, 72727, 75223, 75527, 75553, 222527, 222533, 222553, 223273, 223753, 225223 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 (Terms for n = 1..1000 from Harvey P. Dale) EXAMPLE 223 is a term as the next prime 227 also has only prime digits. MATHEMATICA NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 0; q = 1; pd = {1}; Do[p = q; pd = qd; q = NextPrim[p]; qd = Union[ Join[{2, 3, 5, 7}, IntegerDigits[q]]]; If[pd == qd == {2, 3, 5, 7}, Print[p]], {n, 1, 20000}] Prime[#]&/@SequencePosition[Table[If[AllTrue[IntegerDigits[n], PrimeQ], 1, 0], {n, Prime[Range[20000]]}], {1, 1}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 31 2017 *) PROG (Python) from sympy import nextprime, isprime from itertools import count, islice, product def onlypd(n): return set(str(n)) <= set("2357") def agen(): yield from [2, 3, 5] for digits in count(2): for p in product("2357", repeat=digits-1): for end in "37": t = int("".join(p) + end) if isprime(t) and onlypd(nextprime(t)): yield t print(list(islice(agen(), 40))) # Michael S. Branicky, Mar 11 2022 CROSSREFS Cf. A019546, A082756. Sequence in context: A082520 A062597 A038526 * A042067 A333803 A338262 Adjacent sequences: A082752 A082753 A082754 * A082756 A082757 A082758 KEYWORD base,nonn AUTHOR Amarnath Murthy, Apr 18 2003 EXTENSIONS Edited and extended by Robert G. Wilson v, Apr 22 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 31 01:17 EST 2023. Contains 359947 sequences. (Running on oeis4.)