login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082687 Numerator of sum(k=1,n,1/(n+k)). 11

%I

%S 1,7,37,533,1627,18107,237371,95549,1632341,155685007,156188887,

%T 3602044091,18051406831,7751493599,225175759291,13981692518567,

%U 14000078506967,98115155543129,3634060848592973,3637485804655193

%N Numerator of sum(k=1,n,1/(n+k)).

%C Numerator of sum{k=0..n, 1/((k+1)(2k+1))} (denominator is A111876). - _Paul Barry_, Aug 19 2005

%C Numerator of the sum of all matrix elements of n X n Hilbert matrix M(i,j)=1/(i+j-1) (i,j = 1..n). - _Alexander Adamchuk_, Apr 11 2006

%C Numerator of the 2n-th alternating harmonic number H'(2n) = Sum ((-1)^(k+1)/k, k=1..2n). H'(2n) = H(2n) - H(n), where H(n) = Sum (1/k, k=1..n) is n-th Harmonic Number. - _Alexander Adamchuk_, Apr 11 2006

%C a(n) almost always equals A117731[n] = Numerator[n*Sum[1/(n+k),{k,1,n}]] = Numerator[Sum[Sum[1/(i+j-1),{i,1,n}],{j,1,n}]], but differs for n=14,53,98,105,111,114,119,164.. - _Alexander Adamchuk_, Jul 16 2006

%C Sum{k=1 to n} 1/(n+k) = n!^2 *sum{j=1 to n} (-1)^(j+1) /((n+j)!(n-j)!j). - _Leroy Quet_, May 20 2007

%C Seems to be the denominator of the harmonic mean of the first n hexagonal numbers. - _Colin Barker_, Nov 19 2014

%H T. D. Noe, <a href="/A082687/b082687.txt">Table of n, a(n) for n=1..100</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HilbertMatrix.html">Hilbert Matrix</a>.

%F limit n-->infinity sum(k=1, n, 1/(n+k))=log(2).

%F Numerator of Psi(2*n+1)-Psi(n+1). - _Vladeta Jovovic_, Aug 24 2003

%F a(n) = Numerator[Sum[1/k,{k,1,2*n}] - Sum[1/k,{k,1,n}]]. - _Alexander Adamchuk_, Apr 11 2006

%F a(n) = Numerator[Sum[Sum[1/(i+j-1), {i, 1, n}], {j, 1, n}]]. - _Alexander Adamchuk_, Apr 11 2006

%F The o.g.f for sum(k=1,n,1/(n+k))is

%F f(x)=(sqrt(x)*log((1+sqrt(x))/(1-sqrt(x)))+log(1-x))/(2*x*(1-x)).

%e H'(2n) = H(2n) - H(n) = {1/2, 7/12, 37/60, 533/840, 1627/2520, 18107/27720, 237371/360360, 95549/144144, 1632341/2450448, 155685007/232792560, ...}, where H(n) = A001008/A002805.

%e n=2: HilbertMatrix[n,n]

%e 1 1/2

%e 1/2 1/3

%e so a(2) = Numerator[(1 + 1/2 + 1/2 + 1/3)] = Numerator[7/3] = 7.

%e The n X n Hilbert matrix begins:

%e 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...

%e 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...

%e 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...

%e 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...

%e 1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...

%e 1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...

%t Numerator[Sum[1/k,{k,1,2*n}] - Sum[1/k,{k,1,n}]] (* _Alexander Adamchuk_, Apr 11 2006 *)

%t Table[Numerator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 20}] (* _Alexander Adamchuk_, Apr 11 2006 *)

%Y Cf. A058313, A082688 (denominators).

%Y Bisection of A058313.

%Y Cf. A001008, A002805, A058313, A058312, A098118, A086881, A005249, A001008, A002805, A117731.

%K frac,nonn

%O 1,2

%A _Benoit Cloitre_, Apr 12 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 15:32 EST 2016. Contains 279003 sequences.