login
A082639
Numbers n such that 2*n*(n+2) is a square.
5
0, 2, 16, 98, 576, 3362, 19600, 114242, 665856, 3880898, 22619536, 131836322, 768398400, 4478554082, 26102926096, 152139002498, 886731088896, 5168247530882, 30122754096400, 175568277047522, 1023286908188736
OFFSET
1,2
COMMENTS
Even-indexed terms are squares. Their square roots form sequence A005319. Odd-indexed terms divided by 2 are squares. Their square roots form the sequence A002315. (Index starts at 0.)
FORMULA
a(n) = A001541(n) - 1.
a(n) = (1/2)*(s^n + t^n) - 1, where s = 3 + 2*sqrt(2), t = 3 - 2*sqrt(2). Note: s=1/t. a(n) = 6*a(n-1) - a(n-2) + 4, a(0)=0, a(1)=2.
a(n) = 1/kappa(sqrt(2)/A001542(n)); a(n) = 1/kappa(sqrt(8)/A005319(n)) where kappa(x) is the sum of successive remainders by computing the Euclidean algorithm for (1, x). - Thomas Baruchel, Nov 29 2003
G.f.: -2*x^2*(x+1)/((x-1)*(x^2-6*x+1)). - Colin Barker, Nov 22 2012
MATHEMATICA
a[0] = 0; a[1] = 2; a[n_] := a[n] = 6a[n - 1] - a[n - 2] + 4; Table[ a[n], {n, 0, 20}]
LinearRecurrence[{7, -7, 1}, {0, 2, 16}, 30] (* Harvey P. Dale, Nov 21 2015 *)
CROSSREFS
Sequence in context: A376844 A335349 A005058 * A207301 A207105 A207387
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, May 15 2003
STATUS
approved