login
G.f.: Product_{m>=1} 1/(1-x^m)^32.
3

%I #11 Sep 04 2020 12:40:11

%S 1,32,560,7040,70840,604352,4528832,30529280,188313180,1076484640,

%T 5759310304,29064224896,139226153920,636391492800,2787844780160,

%U 11748015743232,47774241056710,187997792512640,717605948122000,2662641484567680,9621587501598688,33916687860860288

%N G.f.: Product_{m>=1} 1/(1-x^m)^32.

%H Alois P. Heinz, <a href="/A082557/b082557.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>

%p a:= proc(n) option remember; `if`(n=0, 1, add(

%p numtheory[sigma](j)*a(n-j), j=1..n)*32/n)

%p end:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Mar 12 2015

%t With[{nn=30},CoefficientList[Series[Product[1/(1-x^m)^32,{m,nn}],{x,0,nn}],x]] (* _Harvey P. Dale_, Sep 04 2020 *)

%Y Cf. 32nd column of A144064.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, May 04 2003