This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082552 Number of sets of distinct primes, the greatest of which is prime(n), whose arithmetic mean is an integer. 1
 1, 1, 2, 5, 6, 12, 21, 31, 58, 111, 184, 356, 665, 1223, 2260, 4227, 7930, 15095, 28334, 53822, 102317, 195012, 373001, 714405, 1370698, 2633383, 5067643, 9765457, 18846711, 36413982, 70431270, 136391723, 264384100, 512959093, 996173830 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The sum of the first 23 primes gives 874 = 23*38, see A045345. - Alois P. Heinz, Aug 02 2009 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..100 EXAMPLE a(4) = 5: prime(4) = 7 and the five sets are (5+7)/2 = 6, 7/1 = 7, (3+7)/2 = 5, (2+3+7)/3 = 4, (3+5+7)/3 = 5. MAPLE b:= proc(t, i, m, h) option remember; if h=0 then `if` (t=0, 1, 0) elif i<1 or h>i then 0 else b (t, i-1, m, h) +b((t+ithprime(i)) mod m, i-1, m, h-1) fi end: a:= n-> add(b(ithprime(n) mod m, n-1, m, m-1), m=1..n): seq (a(n), n=1..40);  # Alois P. Heinz, Aug 02 2009 MATHEMATICA f[n_] := Block[{c = 0, k = n, lst = Prime@ Range@n, np = Prime@n, slst}, While[k < 2^n, slst = Subsets[lst, All, {k}]; If[Last@slst == np && Mod[Plus @@ slst, Length@slst] == 0, c++ ]; k++ ]; c]; Do[ Print[{n, f@n} // Timing], {n, 24}] (* Robert G. Wilson v *) CROSSREFS Cf. A051293, A072701. Sequence in context: A108365 A064765 A257805 * A243798 A057683 A277012 Adjacent sequences:  A082549 A082550 A082551 * A082553 A082554 A082555 KEYWORD nonn AUTHOR Naohiro Nomoto, May 03 2003 EXTENSIONS a(22)-a(24) from Robert G. Wilson v, Jan 19 2007 Corrected a(23) and extended by Alois P. Heinz, Aug 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 15:09 EST 2019. Contains 329896 sequences. (Running on oeis4.)