login
A082527
Least k such that x(k)=0 where x(1)=n x(k)=k^2*floor(x(k-1)/k^2).
1
1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
OFFSET
0,2
FORMULA
a(n) seems to be asymptotic to (c*n)^(1/3) where c=4.96....
EXAMPLE
If x(1)=3 x(2)=4*floor(3/4)=0 hence a(3)=2, if x(1)=10 x(2)=4*floor(10/4)=2 x(3)=0 hence a(10)=3...
PROG
(PARI) a(n)=if(n<0, 0, s=n; c=1; while(s-s%(c^2)>0, s=s-s%(c^2); c++); c)
CROSSREFS
Cf. A073047.
Sequence in context: A237657 A244317 A130255 * A294235 A186188 A227177
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 30 2003
STATUS
approved