login
A082522
Numbers of the form p^(2^k) with p prime and k>0.
6
4, 9, 16, 25, 49, 81, 121, 169, 256, 289, 361, 529, 625, 841, 961, 1369, 1681, 1849, 2209, 2401, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6561, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 14641, 16129, 17161, 18769, 19321, 22201, 22801
OFFSET
1,1
COMMENTS
Every positive square (A000290 without 0) is the product of a unique subset of these numbers. The lexicographically earliest (when ordered) minimal set of generators for the positive squares as a group under A059897(.,.); the intersection of A050376 and A000290. - Peter Munn, Aug 25 2019
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Group.
Eric Weisstein's World of Mathematics, Prime Power.
FORMULA
a(n) = A050376(A181970(n)) = A050376(n)^2. - Vladimir Shevelev, Apr 05 2013
a(n) ~ n^2 log^2 n. - Charles R Greathouse IV, Oct 19 2015
Sum_{n>=1} 1/a(n) = Sum_{k>=1} P(2^k) = 0.53331724743088069672..., where P is the prime zeta function. - Amiram Eldar, Nov 26 2020
EXAMPLE
3^(2^2) = 81, therefore 81 is a term.
PROG
(PARI) lst(lim)=my(v=List(apply(n->n^2, primes(primepi(sqrtint(lim))))), t); forprime(p=2, (lim+.5)^(1/4), t=p^2; while((t=t^2)<=lim, listput(v, t))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Apr 10 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 11 2003
STATUS
approved