login
a(n) = floor of (2^n-1)/n.
8

%I #19 Jun 21 2024 10:57:45

%S 1,1,2,3,6,10,18,31,56,102,186,341,630,1170,2184,4095,7710,14563,

%T 27594,52428,99864,190650,364722,699050,1342177,2581110,4971026,

%U 9586980,18512790,35791394,69273666,134217727,260301048,505290270,981706810

%N a(n) = floor of (2^n-1)/n.

%C a(n) is the largest exponent k such that (2^n)^k || (2^n)!. - _Lekraj Beedassy_, Jan 15 2024

%H Robert Israel, <a href="/A082482/b082482.txt">Table of n, a(n) for n = 1..3320</a>

%F a(n) = (2^n - 1 - A082495(n))/n = A162214(n)/n. - _Robert Israel_, Dec 01 2016

%e a(3) = floor((2^3-1)/3) = floor(7/3) = floor(2.333) = 2.

%p seq(floor((2^n-1)/n), n=1..100); # _Robert Israel_, Dec 01 2016

%o (PARI) for (n=1,50,print1(floor((2^n-1)/n)","))

%Y Cf. A023359, A082495, A162214.

%Y a(n) = A053638(n) - 1.

%K nonn

%O 1,3

%A _Jon Perry_, Apr 27 2003