%I #21 Nov 16 2023 07:44:21
%S 1,1,1,1,1,1,0,1,1,1,0,1,0,0,1,1,2,1,2,1,0,0,2,1,1,0,1,0,0,1,2,1,0,2,
%T 0,1,0,2,0,1,0,0,0,0,1,2,2,1,1,1,2,0,2,1,0,0,2,0,0,1,2,2,0,1,0,0,0,2,
%U 2,0,0,1,0,0,1,2,0,0,2,1,1,0,2,0,2,0
%N Sum over divisors d of n of Kronecker symbol (-60, d).
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A082451/b082451.txt">Table of n, a(n) for n = 1..10000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>, 2019.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>.
%F Expansion of q * f(-q^3) * f(-q^5) / (chi(-q) * chi(-q^15)) in powers of q where f(), chi() are Ramanujan theta functions.
%F Expansion of eta(q^2) * eta(q^3) * eta(q^5) * eta(q^30) / (eta(q) * eta(q^15)) in powers of q.
%F Euler transform of period 30 sequence [ 1, 0, 0, 0, 0, -1, 1, 0, 0, -1, 1, -1, 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 1, -2, ...].
%F a(n) is multiplicative with a(2^e) = a(3^e) = a(5^e) = 1, a(p^e) = e+1 if p == 1, 2, 4, 8 (mod 15), a(p^e) = (1 + (-1)^e)/2 if p == 7, 11, 13, 14 (mod 15).
%F G.f.: x * Product_{k>0} (1 + x^k) * (1 - x^(3*k)) * (1 - x^(5*k)) * (1 + x^(15*k)).
%F a(n) = A128616(n) + A128617(n). - _Michael Somos_, Nov 15 2015
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(15) = 0.811155... . - _Amiram Eldar_, Nov 16 2023
%e G.f. = q + q^2 + q^3 + q^4 + q^5 + q^6 + q^8 + q^9 + q^10 + q^12 + q^15 + q^16 + ...
%t a[ n_] := If[ n < 1, 0, DivisorSum[n, KroneckerSymbol[-60, #] &]]; (* _Michael Somos_, Nov 15 2015 *)
%t a[ n_] := If[ n < 1, 0, Times @@ (Which[# < 7, 1, KroneckerSymbol[-60, #] == 1, #2 + 1, True, 1 - Mod[#2, 2]] & @@@ FactorInteger[n])]; (* _Michael Somos_, Nov 15 2015 *)
%t a[ n_] := SeriesCoefficient[ q QPochhammer[ q^3] QPochhammer[ q^5] QPochhammer[ -q, q] QPochhammer[ -q^15, q^15], {q, 0, n}]; (* _Michael Somos_, Nov 15 2015 *)
%o (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-60, d)))};
%o (PARI) {a(n) = if( n<1, 0, direuler(p=2, n, 1 / ((1 - X) * (1 - kronecker(-60, p)*X))[n]))};
%o (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^5 + A) * eta(x^30 + A) / (eta(x + A) * eta(x^15 + A)), n))};
%Y Cf. A128616, A128617.
%Y Cf. A000122, A000700, A010054, A121373.
%K nonn,easy,mult
%O 1,17
%A _Michael Somos_, Apr 25 2003