login
Number of length-n 7/3-power-free words over the alphabet {0,1}.
3

%I #20 Jul 21 2021 09:55:37

%S 1,2,4,6,10,14,20,24,30,40,48,56,64,76,82,92,106,124,142,152,172,192,

%T 210,220,234,256,284,308,314,332,356,372,392,420,456,488,524,560,588,

%U 608,640,684,736,764,796,832,874,892,912,948,994,1020,1060,1112,1184

%N Number of length-n 7/3-power-free words over the alphabet {0,1}.

%H Juhani Karhumäki and Jeffrey Shallit, <a href="https://arxiv.org/abs/math/0304095">Polynomial versus exponential growth in repetition-free binary words</a>, arXiv:math/0304095 [math.CO], April 7 2003.

%H Juhani Karhumäki and Jeffrey Shallit, <a href="https://doi.org/10.1016/j.jcta.2003.12.004">Polynomial versus exponential growth in repetition-free binary words</a>, Journal of Combinatorial Theory, Series A 105 (2004) 335-347.

%Y Cf. A038952, A028445, A007777, A082380.

%K nonn

%O 0,2

%A _Ralf Stephan_, Apr 10 2003

%E Name changed by _Jeffrey Shallit_, Sep 26 2014

%E More terms from _Jeffrey Shallit_, Jul 17 2021