login
A082376
First of quadruple of consecutive primes p1,p2,p3,p4 such that the congruence p2^x - p1^x == p3 (mod p4) has no solution.
1
3, 13, 53, 59, 61, 71, 73, 97, 109, 127, 137, 149, 151, 179, 197, 239, 241, 277, 283, 293, 311, 313, 389, 401, 419, 431, 433, 439, 457, 463, 467, 491, 499, 503, 541, 547, 557, 563, 569, 577, 601, 619, 641, 643, 653, 673, 743, 769, 773, 797, 853, 881, 887, 907, 911, 919, 929, 971, 991, 1021, 1031
OFFSET
1,1
LINKS
EXAMPLE
For the prime quadruple 3,5,7,11, 5^x-3^x == 7 (mod 11) has no solutions.
MAPLE
Res:= NULL: count:= 0:
p1:= 2: p2:= 3: p3:= 5: p4:= 7:
while count < 100 do
found:= false;
for x from 1 to p4-2 do
if p2 &^ x - p1 &^ x - p3 mod p4 = 0 then found:= true; break fi
od:
if not found then Res:= Res, p1; count:= count+1 fi;
p1:= p2: p2:= p3: p3:= p4: p4:= nextprime(p4);
od:
Res; # Robert Israel, Mar 18 2018
CROSSREFS
Cf. A082371.
Sequence in context: A122600 A063682 A346409 * A065059 A198584 A346382
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, May 11 2003
EXTENSIONS
Name clarified by Robert Israel, Mar 18 2018
STATUS
approved