login
A082307
Expansion of e.g.f. (1+x)*exp(3*x)*cosh(x).
4
1, 4, 16, 66, 280, 1208, 5248, 22816, 98944, 427392, 1838080, 7870976, 33568768, 142637056, 604045312, 2550276096, 10737713152, 45097779200, 188979871744, 790276734976, 3298540650496, 13743907405824, 57174629810176
OFFSET
0,2
COMMENTS
Binomial transform of A002306; a(n)=(A082308(n)+A079028(n))/2
FORMULA
a(n) = ((n+2)*2^(n-1) + (n+4)*4^(n-1))/2.
G.f.: ((1-3x)/(1-4x)^2 + (1-x)/(1-2x)^2)/2.
E.g.f. (1+x)*exp(3*x)*cosh(x).
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[(1 + x)*Exp[3*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Sep 16 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace((1+x)*exp(3*x)*cosh(x))) \\ G. C. Greubel, Sep 16 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)*Exp(3*x)*Cosh(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 16 2018
CROSSREFS
Cf. A082308.
Sequence in context: A217632 A026762 A277871 * A099782 A109034 A110276
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 09 2003
STATUS
approved