This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082284 a(n) = smallest number k such that k - tau(k) = n, or 0 if no such number exists, where tau(n) = the number of divisors of n (A000005). 22
 1, 3, 6, 5, 8, 7, 9, 0, 0, 11, 14, 13, 18, 0, 20, 17, 24, 19, 22, 0, 0, 23, 25, 27, 0, 0, 32, 29, 0, 31, 34, 35, 40, 0, 38, 37, 0, 0, 44, 41, 0, 43, 46, 0, 50, 47, 49, 51, 56, 0, 0, 53, 0, 57, 58, 0, 0, 59, 62, 61, 72, 65, 68, 0, 0, 67, 0, 0, 0, 71, 74, 73, 84, 77, 0, 0, 81, 79, 82, 0, 88 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(p-2) = p for odd primes p. LINKS Antti Karttunen, Table of n, a(n) for n = 0..124340 FORMULA Other identities and observations. For all n >= 0: a(n) <= A262686(n). MAPLE N:= 1000: # to get a(0) .. a(N) V:= Array(0..N): for k from 1 to 2*(N+1) do   v:= k - numtheory:-tau(k);   if v <= N and V[v] = 0 then V[v]:= k fi od: seq(V[n], n=0..N); # Robert Israel, Dec 21 2015 MATHEMATICA Table[k = 1; While[k - DivisorSigma[0, k] != n && k <= 2 (n + 1), k++]; If[k > 2 (n + 1), 0, k], {n, 0, 80}]] (* Michael De Vlieger, Dec 22 2015 *) PROG (PARI) allocatemem(123456789); uplim1 = 2162160 + 320; \\ = A002182(41) + A002183(41). uplim2 = 2162160; v082284 = vector(uplim1); A082284 = n -> if(!n, 1, v082284[n]); for(n=1, uplim1, k = n-numdiv(n); if((0 == A082284(k)), v082284[k] = n)); for(n=0, 124340, write("b082284.txt", n, " ", A082284(n))); \\ Antti Karttunen, Dec 21 2015 (Scheme) (define (A082284 n) (if (zero? n) 1 (let ((u (+ n (A002183 (+ 2 (A261100 n)))))) (let loop ((k n)) (cond ((= (A049820 k) n) k) ((> k u) 0) (else (loop (+ 1 k)))))))) ;; Antti Karttunen, Dec 21 2015 CROSSREFS Column 1 of A265751. Cf. A000005, A002182, A002183, A049820, A060990, A261100. Cf. A262686 (the largest such number), A262511 (positions where these are equal and nonzero). Cf. A266114 (same sequence sorted into ascending order, with zeros removed). Cf. A266115 (positive numbers missing from this sequence). Cf. A266110 (number of iterations before zero is reached), A266116 (final nonzero value reached). Cf. also tree A263267 and its illustration. Sequence in context: A113533 A201418 A123688 * A241474 A259556 A063520 Adjacent sequences:  A082281 A082282 A082283 * A082285 A082286 A082287 KEYWORD nonn AUTHOR Amarnath Murthy, Apr 14 2003 EXTENSIONS More terms from David Wasserman, Aug 31 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 17:27 EDT 2019. Contains 327136 sequences. (Running on oeis4.)