

A082277


Smallest prime that is the sum of prime(n) consecutive primes.


0



5, 23, 53, 197, 233, 691, 499, 857, 1151, 2099, 2399, 2909, 3821, 4217, 5107, 6079, 10091, 8273, 12281, 11597, 12713, 15527, 22741, 26041, 25759, 37447, 28087, 36607, 36067, 35527, 42463, 46181, 49279, 65033, 67271, 71011, 71167, 76099, 78139
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..39.


FORMULA

Sum of reciprocals converges to .28053...


EXAMPLE

For prime 3
2+3+5 = 10
3+5+7 = 15
5+7+11 = 23
7+11+13= 31
so 5+7+11 = 23 is the first prime that is the sum of 3 consecutive primes.


PROG

(PARI) \ First prime in the sum of a prime number of consecutive primes psum1pprm(n) = { sr=.2; print1(5" "); forprime(i=2, n, s=0; for(j=1, i, s+=prime(j); ); for(x=1, n, s = s  prime(x)+ prime(x+i); if(isprime(s), sr+=1.0/s; print1(s" "); break); ); ); print(); print(sr) }


CROSSREFS

Sequence in context: A247657 A241099 A090686 * A289154 A155851 A019267
Adjacent sequences: A082274 A082275 A082276 * A082278 A082279 A082280


KEYWORD

easy,nonn


AUTHOR

Cino Hilliard, May 09 2003


STATUS

approved



