login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082176 Professor E. P. B. Umbugio's sequence. 3
0, 0, 206276, 1124101062, 4106026092896, 12565214785548390, 34787981278581970376, 90353184628933414448862, 224610989213093282203310816, 541037084832262355204120965110, 1272999064631803815296028401200376, 2942001006486252167427671506502189262 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The problem was to prove that 1946 divides every a(n). The proof uses 2141 - 1770 = 371 = 1863 - 1492 and 2141 - 1863 = 278 = 1770 - 1492, gcd(278,371) = 1, 278*371 = 53*1946 and the fact that x - y not 0 divides x^n - y^n for n>=0. See the Starke reference. The primes that divide every a(n) are 2, 7, 53, 139. Note the historical dates other than 2141 in the formula. This AMM problem was proposed in 1946 (with a reference to April 1).

REFERENCES

C. A. Pickover, Die Mathematik und das Goettliche, Spektrum Akademischer Verlag, Heidelberg, Berlin, 1999, pp. 56-8, 398 (English: The Loom of God, Plenum, 1997).

LINKS

Colin Barker, Table of n, a(n) for n = 0..300

H. E. G. P., Elementary problem No. E716, Professor Umbugio's Prediction, Solution by E. P. Starke, American Math. Monthly 54:1 (1947), pp. 43-44.

Index entries for linear recurrences with constant coefficients, signature (7266,-19690571,23585007306,-10533473613720).

FORMULA

a(n) = 1492^n - 1770^n - 1863^n + 2141^n.

From Colin Barker, Nov 21 2015: (Start)

a(n) = 7266*a(n-1) - 19690571*a(n-2) + 23585007306*a(n-3) - 10533473613720*a(n-4) for n>3.

G.f: -103138*x^2*(3633*x-2) / ((1492*x-1)*(1770*x-1)*(1863*x-1)*(2141*x-1)).

(End)

MATHEMATICA

Table[1492^n - 1770^n - 1863^n + 2141^n, {n, 0, 11}] (* Michael De Vlieger, Nov 21 2015 *)

CoefficientList[Series[-103138 x^2 (3633 x - 2)/((1492 x - 1) (1770 x - 1) (1863 x - 1) (2141 x - 1)), {x, 0, 20}], x] (* Vincenzo Librandi, Nov 22 2015 *)

PROG

(PARI) a(n)=1492^n-1770^n-1863^n+2141^n \\ Charles R Greathouse IV, Sep 16 2015

(PARI) concat(vector(2), Vec(-103138*x^2*(3633*x-2)/((1492*x-1)*(1770*x-1)*(1863*x-1)*(2141*x-1)) + O(x^15))) \\ Colin Barker, Nov 21 2015

(MAGMA) [1492^n-1770^n-1863^n+2141^n: n in [0..20]]; // Vincenzo Librandi, Nov 22 2015

CROSSREFS

Cf. A082177, A082178.

Sequence in context: A234061 A234060 A115946 * A178285 A101701 A092011

Adjacent sequences:  A082173 A082174 A082175 * A082177 A082178 A082179

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Apr 25 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 4 11:19 EDT 2016. Contains 272398 sequences.