OFFSET
0,1
COMMENTS
An indefinite quadratic form in two variables over the integers, a*x^2 + b*x*y + c*y^2 with discriminant D = b^2 - 4*a*c > 0, 0 or 1 (mod 4) and not a square, is called reduced if b>0 and f(D) - min(|2*a|,|2*c|) <= b < f(D), with f(D) := ceiling(sqrt(D)). It is called primitive if gcd(a,b,c)=1 (relative prime). See the Scholz-Schoeneberg reference for these definitions.
REFERENCES
A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, ch.IV, par.31, p. 112 and par.27, p. 97.
FORMULA
a(n)= number of primitive reduced indefinite binary quadratic forms over the integers for D(n)=A079896(n).
EXAMPLE
a(0)=2 because there are two reduced forms for D(0)=A079896(0)=5, namely [a,b,c]=[-1, 1, 1] and [1, 1, -1]; here f(5)=3.
a(4)=6: for D(4)=A079896(4)=17 (f(17)=5) the 6 reduced [a,b,c] forms are [[-2, 1, 2], [2, 1, -2], [-2, 3, 1], [-1, 3, 2], [1, 3, -2], [2, 3, -1]]. They are all primitive.
a(5)=2: for D(5)=A079896(5)=20 (f(20)=5) there are four reduced forms: [-2, 2, 2], [2, 2, -2], [-1, 4, 1] and [1, 4, -1], but only two of them are primitive, namely [-1, 4, 1] and [1, 4, -1].
CROSSREFS
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Apr 11 2003
STATUS
approved