login
A082172
A subclass of quasi-acyclic automata with 3 inputs, n transient and k absorbing labeled states.
4
1, 1, 7, 1, 26, 315, 1, 63, 2600, 45682, 1, 124, 11655, 675194, 15646589, 1, 215, 37944, 4861458, 366349152, 10567689552, 1, 342, 100835, 23641468, 3882676581, 361884843866, 12503979423607, 1, 511, 232560, 89076650, 26387681120, 5318920238688, 591934698991168, 23841011541867520
OFFSET
0,3
COMMENTS
Array read by antidiagonals: (0,1),(0,2),(1,1),(0,3),... . The first column is A082160.
LINKS
Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
FORMULA
T(n, k) = S_3(n, k) where S_3(0, k) = 1, S_3(n, k) = Sum_{i=0..n-1} (-1)^(n-i-1)*binomial(n, i)*((i+k+1)^3-1)^(n-i)*S_3(i, k), n > 0.
EXAMPLE
The array begins:
1, 1, 1, 1, 1, ...;
7, 26, 63, 124, 215, ...;
315, 2600, 11655, 37944, 100835, ...;
45682, 675194, 4861458, 23641468, 89076650, ...;
15646589, 366349152, 3882676581, 26387681120, ...;
10567689552, 361884843866, ...;
12503979423607, ...;
Antidiagonals begin as:
1;
1, 7;
1, 26, 315;
1, 63, 2600, 45682;
1, 124, 11655, 675194, 15646589;
1, 215, 37944, 4861458, 366349152, 10567689552;
1, 342, 100835, 23641468, 3882676581, 361884843866, 12503979423607;
MATHEMATICA
T[0, _] = 1; T[n_, k_] := T[n, k] = Sum[Binomial[n, i]*(-1)^(n - i - 1)*((i + k + 1)^3 - 1)^(n - i)*T[i, k], {i, 0, n - 1}];
Table[T[n-k, k], {n, 1, 9}, {k, n, 1, -1}]//Flatten (* Jean-François Alcover, Aug 27 2019 *)
PROG
(Magma)
function A(n, k)
if n eq 0 then return 1;
else return (&+[(-1)^(n-j+1)*Binomial(n, j)*((k+j+1)^3-1)^(n-j)*A(j, k): j in [0..n-1]]);
end if;
end function;
A082172:= func< n, k | A(k, n-k+1) >;
[A082172(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
(SageMath)
@CachedFunction
def A(n, k):
if n==0: return 1
else: return sum((-1)^(n-j+1)*binomial(n, j)*((k+j+1)^3-1)^(n-j)*A(j, k) for j in range(n))
def A082172(n, k): return A(k, n-k+1)
flatten([[A082172(n, k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Valery A. Liskovets, Apr 09 2003
STATUS
approved