This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082148 a(0)=1; for n >= 1, a(n) = Sum_{k=0..n} 10^k*N(n,k), where N(n,k) = (1/n)*C(n,k)*C(n,k+1) are the Narayana numbers (A001263). 7
 1, 1, 11, 131, 1661, 22101, 305151, 4335711, 63009881, 932449961, 14004694451, 212944033051, 3271618296661, 50711564152381, 792088104593511, 12454801769554551, 196991734871121201, 3131967533789345361, 50026642742943415131, 802406215117502069811 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS More generally, coefficients of (1+m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/((2*m+2)*x) are given by: a(n) = Sum_{k=0..n} (m+1)^k*N(n,k)). The Hankel transform of this sequence is 10^C(n+1,2). - Philippe Deléham, Oct 29 2007 a(n) = upper left term in M^n, M = the production matrix:    1,  1;   10, 10, 10;    1,  1,  1,  1;   10, 10, 10, 10, 10;    1,  1,  1,  1,  1,  1;   ... - Gary W. Adamson, Jul 08 2011 Shifts left when INVERT transform applied ten times. - Benedict W. J. Irwin, Feb 07 2016 For fixed m > 0, if g.f. = (1+m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/((2*m+2)*x) then a(n,m) ~ (m + 2 + 2*sqrt(m+1))^(n + 1/2) / (2*sqrt(Pi) * (m+1)^(3/4) * n^(3/2)). - Vaclav Kotesovec, Mar 19 2018 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4. FORMULA G.f.: (1+9*x-sqrt(81*x^2-22*x+1))/(20*x). a(n) = Sum_{k=0..n} A088617(n, k)*10^k*(-9)^(n-k). - Philippe Deléham, Jan 21 2004 a(n) = (11*(2n-1)*a(n-1) - 81*(n-2)*a(n-2)) / (n+1) for n>=2, a(0)=a(1)=1. - Philippe Deléham, Aug 19 2005 a(n) ~ sqrt(20+11*sqrt(10))*(11+2*sqrt(10))^n/(20*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012 G.f.: 1/(1 - x/(1 - 10*x/(1 - x/(1 - 10*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Aug 10 2017 a(n) = hypergeom([1 - n, -n], [2], 10). - Peter Luschny, Mar 19 2018 MAPLE A082148_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1; for w from 1 to n do a[w]:=a[w-1]+10*add(a[j]*a[w-j-1], j=1..w-1) od; convert(a, list) end: A082148_list(17); # Peter Luschny, May 19 2011 MATHEMATICA Table[SeriesCoefficient[(1+9*x-Sqrt[81*x^2-22*x+1])/(20*x), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *) a[n_] := Sum[10^k*1/n*Binomial[n, k]*Binomial[n, k + 1], {k, 0, n}]; a[0] = 1; Array[a, 20, 0] (* Robert G. Wilson v, Feb 10 2018 *) a[n_] := Hypergeometric2F1[1 - n, -n, 2, 10]; Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 19 2018 *) PROG (PARI) a(n)=if(n<1, 1, sum(k=0, n, 10^k/n*binomial(n, k)*binomial(n, k+1))) (MAGMA) I:=[1, 11]; [1] cat [n le 2 select I[n] else (11*(2*n-1)*Self(n-1) - 81*(n-2)*Self(n-2))/(n+1): n in [1..30]]; // G. C. Greubel, Feb 10 2018 CROSSREFS Cf. A001003, A007564, A059231. Sequence in context: A076357 A015606 A077417 * A075509 A061113 A261689 Adjacent sequences:  A082145 A082146 A082147 * A082149 A082150 A082151 KEYWORD nonn AUTHOR Benoit Cloitre, May 10 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)