login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082147 a(0)=1, for n>=1 a(n)=sum(k=0,n,8^k*N(n,k)) where N(n,k) =1/n*C(n,k)*C(n,k+1) are the Narayana numbers (A001263). 7
1, 1, 9, 89, 945, 10577, 123129, 1476841, 18130401, 226739489, 2878666857, 37006326777, 480750990993, 6301611631473, 83240669582937, 1106980509493641, 14808497812637121, 199138509770855489, 2690461489090104009 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

More generally coefficients of (1+m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/((2*m+2)*x) are given by : a(n)=sum(k=0,n,(m+1)^k*N(n,k))

The Hankel transform of this sequence is 8^C(n+1,2) . - Philippe Deléham, Oct 29 2007

Shifts left when INVERT transform applied eight times. - Benedict W. J. Irwin, Feb 07 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.

FORMULA

G.f.: (1+7*x-sqrt(49*x^2-18*x+1))/(16*x).

a(n) = Sum_{k=0..n} A088617(n, k)*8^k*(-7)^(n-k). - Philippe Deléham, Jan 21 2004

a(n) = [9(2n-1)a(n-1) - 49(n-2)a(n-2)] / (n+1) for n>=2, a(0) = a(1) = 1. - Philippe Deléham, Aug 19 2005

a(n) = upper left term in M^n, M = the production matrix:

1, 1

8, 8, 8

1, 1, 1, 1

8, 8, 8, 8, 8

1, 1, 1, 1, 1, 1

...

- Gary W. Adamson, Jul 08 2011

a(n) ~ sqrt(16+18*sqrt(2))*(9+4*sqrt(2))^n/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012

G.f.: 1/(1 - x/(1 - 8*x/(1 - x/(1 - 8*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Apr 21 2017

MAPLE

A082147_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;

for w from 1 to n do a[w] := a[w-1]+8*add(a[j]*a[w-j-1], j=1..w-1) od;

convert(a, list) end: A082147_list(18); # Peter Luschny, May 19 2011

MATHEMATICA

Table[SeriesCoefficient[(1+7*x-Sqrt[49*x^2-18*x+1])/(16*x), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *)

PROG

(PARI) a(n)=if(n<1, 1, sum(k=0, n, 8^k/n*binomial(n, k)*binomial(n, k+1)))

CROSSREFS

Cf. A001003, A007564, A059231.

Sequence in context: A109002 A142991 A152267 * A095722 A199759 A069573

Adjacent sequences:  A082144 A082145 A082146 * A082148 A082149 A082150

KEYWORD

nonn

AUTHOR

Benoit Cloitre, May 10 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 26 02:24 EDT 2017. Contains 288749 sequences.