This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082133 Expansion of e.g.f. x*exp(2*x)*cosh(x). 4
 0, 1, 4, 15, 56, 205, 732, 2555, 8752, 29529, 98420, 324775, 1062888, 3454373, 11160268, 35872275, 114791264, 365897137, 1162261476, 3680494655, 11622614680, 36611236221, 115063885244, 360882185515, 1129718145936 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Binomial transform of A057711. 2nd binomial transform of (0,1,0,3,0,5,0,7,...). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (8,-22,24,-9). FORMULA a(n) = n*(1^(n-1) + 3^(n-1))/2. E.g.f.: x*exp(2x)*cosh(x). G.f.: x*(1-4*x+5*x^2) / ( (3*x-1)^2*(x-1)^2 ). - R. J. Mathar, Nov 24 2012 a(n) = Sum_{k=1..n} (Sum_{j=1..3} Stirling2(n,j)). - G. C. Greubel, Feb 07 2018 MAPLE with (combinat):seq(sum(sum(stirling2(n, j), j=1..3), k=1..n), n=0..24); # Zerinvary Lajos, Dec 04 2007 MATHEMATICA With[{nn=30}, CoefficientList[Series[x Exp[2x]Cosh[x], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Apr 30 2012 *) Table[n*(1^(n-1) + 3^(n-1))/2, {n, 0, 30}] (* G. C. Greubel, Feb 05 2018 *) Table[Sum[Sum[StirlingS2[n, j], {j, 1, 3}], {k, 1, n}], {n, 0, 30}] (* G. C. Greubel, Feb 07 2018 *) PROG (PARI) for(n=0, 30, print1(n*(1^(n-1) + 3^(n-1))/2, ", ")) \\ G. C. Greubel, Feb 05 2018 (MAGMA) [n*(1^(n-1) + 3^(n-1))/2: n in [0..30]]; // G. C. Greubel, Feb 05 2018 (GAP) List([0..10^2], n->Sum([1..n], k->Sum([1..3], j->Stirling2(n, j)))); # Muniru A Asiru, Feb 06 2018 CROSSREFS Cf. A082134, A082135, A082136. Sequence in context: A183932 A009940 A081163 * A060111 A077824 A291030 Adjacent sequences:  A082130 A082131 A082132 * A082134 A082135 A082136 KEYWORD easy,nonn AUTHOR Paul Barry, Apr 06 2003 EXTENSIONS Definition clarified by Harvey P. Dale, Apr 30 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 10:15 EDT 2019. Contains 328026 sequences. (Running on oeis4.)