The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082070 Smallest prime that divides phi(n) and sigma(n) = A000203(n), or 1 if phi(n) and sigma(n) are relatively prime. 7
 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Antti Karttunen, Table of n, a(n) for n = 1..16384 FORMULA a(n) = A020639(A009223(n)). - Antti Karttunen, Nov 03 2017 MATHEMATICA ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; f1[x_] := EulerPhi[x]; f2[x_] := DivisorSigma[1, x]; Table[Min[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}] (* Second program: *) Array[If[CoprimeQ[#1, #2], 1, Min@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {EulerPhi@ #, DivisorSigma[1, #]} &, 105] (* Michael De Vlieger, Nov 03 2017 *) PROG (PARI) A020639(n) = if(1==n, n, vecmin(factor(n)[, 1])); A082070(n) = A020639(gcd(eulerphi(n), sigma(n))); \\ Antti Karttunen, Nov 03 2017 CROSSREFS Cf. A000010, A000203, A009223, A020639. Cf. also A082064, A082067, A082068, A082069, A082071, A082072. Sequence in context: A248597 A082071 A082065 * A082902 A123926 A082064 Adjacent sequences:  A082067 A082068 A082069 * A082071 A082072 A082073 KEYWORD nonn AUTHOR Labos Elemer, Apr 07 2003 EXTENSIONS Name edited by Antti Karttunen after an example by N. J. A. Sloane, Nov 04 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 01:02 EST 2020. Contains 332195 sequences. (Running on oeis4.)