login
a(n) = 2^r*3^s where r = n(n+1)/2 and s = n(n-1)/2.
3

%I #11 Nov 18 2018 00:41:53

%S 1,2,24,1728,746496,1934917632,30091839012864,2807929681968365568,

%T 1572081206902992767287296,5280985496827154199640037916672,

%U 106440332834866049138191223105387495424,12872079797383178927229037635891253693013557248

%N a(n) = 2^r*3^s where r = n(n+1)/2 and s = n(n-1)/2.

%F a(n+1) = 2^(n+1)*3^n*a(n), a(1) = 2. - _Ryan Propper_, Jun 15 2005

%F A171795(n) = a(-n). a(n+1) * a(n-1) = 6 * a(n)^2. - _Michael Somos_, Dec 17 2009

%t Do[Print[2^(n*(n+1)/2)*3^(n*(n-1)/2)], {n, 10}] (* _Ryan Propper_, Jun 15 2005 *)

%o (PARI) {a(n) = 3^(n*(n-1)/2) * 2^(n*(n+1)/2)} /* _Michael Somos_, Dec 17 2009 */

%Y Sequence contains the product of a row in A081954.

%Y Cf. A025192, A081954, A081956.

%K nonn

%O 0,2

%A _Amarnath Murthy_, Apr 02 2003

%E More terms from _Ryan Propper_, Jun 15 2005