login
A081926
Triangle read by rows in which n-th row gives n smallest numbers with digit sum n.
5
1, 2, 11, 3, 12, 21, 4, 13, 22, 31, 5, 14, 23, 32, 41, 6, 15, 24, 33, 42, 51, 7, 16, 25, 34, 43, 52, 61, 8, 17, 26, 35, 44, 53, 62, 71, 9, 18, 27, 36, 45, 54, 63, 72, 81, 19, 28, 37, 46, 55, 64, 73, 82, 91, 109, 29, 38, 47, 56, 65, 74, 83, 92, 119, 128, 137
OFFSET
1,2
LINKS
Robert Israel, Table of n, a(n) for n = 1..10011 (first 141 rows, flattened; first 40 rows from T. D. Noe)
EXAMPLE
Triangle starts
1
2 11
3 12 21
4 13 22 31
5 14 23 32 41
MAPLE
f:= proc(n) local Res, d, v, count;
Res:= NULL; count:= 0;
for d from ceil(n/9) while count < n do
v:= g(n, d, n-count, 1);
Res:= Res, op(v);
count:= count + nops(v);
od:
Res
end proc:
g:= proc(n, d, remain) local rem, Res, j, j0, v;
if remain = 0 then return [] else rem:= remain fi;
if nargs = 4 then j0:= 1 else j0:= 0 fi;
if d = 1 then if n >= j0 and n <= 9 then [n] else [] fi
else
Res:= NULL;
for j from max(j0, ceil(n-9*(d-1))) to min(9, n) while rem > 0 do
v:= map(t -> j*10^(d-1)+t, procname(n-j, d-1, rem));
Res:= Res, op(v);
rem:= rem - nops(v);
od;
[Res]
fi
end proc:
for i from 1 to 25 do f(i) od; # Robert Israel, Feb 19 2018
MATHEMATICA
Needs["Combinatorica`"]; Table[Take[Union[Flatten[Table[FromDigits /@ Permutations[PadRight[s, 6]], {s, Partitions[n, 9]}]]], n], {n, 40}] (* T. D. Noe, Mar 08 2013 *)
CROSSREFS
Sequence in context: A087712 A180702 A263328 * A242614 A069800 A275536
KEYWORD
base,easy,nonn,tabl,look
AUTHOR
Amarnath Murthy, Apr 01 2003
STATUS
approved