login
A081915
a(n) = 4^n*(n^3 - 3n^2 + 2n + 384)/384.
4
1, 4, 16, 65, 272, 1184, 5376, 25344, 122880, 606208, 3014656, 15007744, 74448896, 367001600, 1795162112, 8707375104, 41875931136, 199715979264, 944892805120, 4436701216768, 20684562497536, 95794950569984, 440904162738176
OFFSET
0,2
COMMENTS
Binomial transform of A081914. 4th binomial transform of (1,0,0,1,0,0,0,0,...). Case k=4 where a(n,k) = k^n*(n^3 - 3n^2 + 2n + 6k^3)/(6k^3), with g.f.: (1 - 3kx + 3k^2x^2 - (k^3-1)x^3)/(1-kx)^4.
FORMULA
a(n) = 4^n*(n^3 - 3n^2 + 2n + 384)/384.
G.f.: (1 - 12x + 48x^2 - 63x^3)/(1-4x)^4.
MATHEMATICA
LinearRecurrence[{16, -96, 256, -256}, {1, 4, 16, 65}, 30] (* Harvey P. Dale, Aug 14 2017 *)
CoefficientList[Series[(1 - 12x + 48x^2 - 63x^3)/(1-4x)^4 , {x, 0, 30}], x] (* Stefano Spezia, Sep 02 2018 *)
PROG
(Magma) [4^n*(n^3-3*n^2+2*n+384)/384: n in [0..40]]; // Vincenzo Librandi, Apr 27 2011
(PARI) a(n)=4^n*(n^3-3*n^2+2*n+384)/384 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A081916.
Sequence in context: A026674 A099781 A026872 * A307878 A217632 A026762
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 31 2003
STATUS
approved