Conjecture of A081832

Altug Alkan

June 9, 2018

1

Proposition 1. $a(n+1) - a(n) \in \{0,1\}$ for all $n \ge 1$ where $a(n) = a(n+1-2 \cdot a(n-1)) + a(n-2 \cdot a(n-2))$, with a(1) = a(2) = 1.

Proof. Let us assume that $a(k) - a(k-1) \in \{0, 1\}$ for all $2 \le k \le n$. We know that this is correct for small n and we proceed by induction. We should show that $a(n+1) - a(n) \in \{0, 1\}$ for all possible cases. By definition equations are below.

$$a(n+1) = a(n+2-2 \cdot a(n)) + a(n+1-2 \cdot a(n-1))$$
(1.1)

$$a(n) = a(n+1-2 \cdot a(n-1)) + a(n-2 \cdot a(n-2))$$
(1.2)

$$a(n-1) = a(n-2 \cdot a(n-2)) + a(n-1-2 \cdot a(n-3))$$
(1.3)

$$a(n-2) = a(n-1-2 \cdot a(n-3)) + a(n-2-2 \cdot a(n-4))$$
(1.4)

From 1.1 and 1.2, $a(n+1) - a(n) = a(n+2-2 \cdot a(n)) - a(n-2 \cdot a(n-2)).$

Case 1.
$$a(n) = a(n-1) + 1$$
 and $a(n-1) = a(n-2)$. At this case,

$$\begin{aligned} a(n+1) - a(n) &= a(n+2-2 \cdot a(n)) - a(n-2 \cdot a(n-2)) \\ &= a(n+2-2 \cdot (a(n-1)+1)) - a(n-2 \cdot a(n-1)) \\ &= a(n-2 \cdot a(n-1)) - a(n-2 \cdot a(n-1)) \\ &= 0. \end{aligned}$$

In this case, there is more than above. From 1.2 and 1.3, $a(n) - a(n-1) = a(n+1-2 \cdot a(n-1)) - a(n-1-2 \cdot a(n-3)) = 1$. Since our initial assumption exists about slowness, this can be only possible with $n+1-2 \cdot a(n-1) > n-1-2 \cdot a(n-3)$ and a(n-1) - a(n-3) < 1, that is, a(n-1) = a(n-2) = a(n-3). Since we know that a(n+1) - a(n) = 0 in above, this case guarantees that existence of two consecutive 1 in first differences is impossible. In other words, if a(n) - a(n-1) = 1, then a(n-1) = a(n-2) and a(n) = a(n+1) are only options and this means that

we have $2^2 - 1 = 3$ cases in order to complete this proof.

Case 2.
$$a(n) = a(n-1)$$
 and $a(n-1) = a(n-2) + 1$. At this case,
 $a(n+1) - a(n) = a(n+2-2 \cdot a(n)) - a(n-2 \cdot a(n-2))$
 $= a(n+2-2 \cdot (a(n-2)+1)) - a(n-2 \cdot a(n-2))$
 $= a(n-2 \cdot a(n-2)) - a(n-2 \cdot a(n-2))$
 $= 0.$

Case 3. a(n) = a(n-1) and a(n-1) = a(n-2). At this case,

$$a(n+1) - a(n) = a(n+2-2 \cdot a(n)) - a(n-2 \cdot a(n-2))$$

= $a(n+2-2 \cdot a(n)) - a(n-2 \cdot a(n))$

In here, we can use the fact that existence of two consecutive 1 in first differences is impossible because there is 2 difference in indices and this means that $a(n+2-2 \cdot a(n)) - a(n-2 \cdot a(n)) \in \{0,1\}$ by initial assumption. This case completes the induction.