The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081798 a(n) = Sum_{k = 0..n} C(n,k) * C(n+k,k) * C(n+2*k,k). 10
 1, 7, 115, 2371, 54091, 1307377, 32803219, 844910395, 22188235867, 591446519797, 15953338537885, 434479441772845, 11927609772412075, 329653844941016785, 9163407745486783435, 255982736410338609931, 7181987671728091545787 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is also a generalization of Delannoy numbers to 3D; i.e. the number of walks from (0,0,0) to (n,n,n) in a 3D square lattice where each step is in the direction of one of (1,0,0), (0,1,0), (0,0,1) and (1,1,1). - Theodore Kolokolnikov, Jul 04 2010 Diagonal of the rational function 1/(1 - x - y - z - x*y*z). - Gheorghe Coserea, Jul 06 2016 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..500 A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015. E. W. Weisstein, in MathWorld: Multinomial Coefficient. FORMULA a(n) = w(n,n,n) where w(i,j,k)=w(i-1,j,k)+w(i,j-1,k)+w(i,j,k-1)+w(i-1,j-1,k-1) and where w(0,0,0)=1 and w(i,j,k)=0 if one of i,j,k is strictly negative. - Theodore Kolokolnikov, Jul 04 2010 G.f.: hypergeom([1/3, 2/3],[1],27*x/(1-x)^3)/(1-x). - Mark van Hoeij, Oct 24 2011 G.f.: Sum_{n>=0} (3*n)!/n!^3 * x^n / (1-x)^(3*n+1). - Paul D. Hanna, Sep 22 2013 a(n) ~ c*d^n/(Pi*n), where d = (3*(292 + 4*sqrt(5))^(2/3) + 132 + 20*(292 + 4*sqrt(5))^(1/3)) / (2*(292 + 4*sqrt(5))^(1/3)) = 29.900786688498085... is the root of the equation -1 + 3*d - 30*d^2 + d^3 = 0 and c = 1/(2*sqrt(((81 - 27*sqrt(5))/2)^(1/3) + 3*((3 + sqrt(5))/2)^(1/3) - 6)) = 0.8959908650405192232... is the root of the equation -1 - 72*c^2 - 1296*c^4 + 1728*c^6 = 0. - Vaclav Kotesovec, Sep 23 2013, updated Jul 07 2016 From Peter Bala, Jan 13 2016: (Start) a(n) = Sum_{k = 0..n} multinomial(n + 2*k, k, k, k, n - k). Cf. A001850(n) = Sum_{k = 0..n} multinomial(n + k, k, k, n - k). exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 42*x^3 + 639*x^4 + 11571*x^5  + ... appears to have integer coefficients. (End) Conjecture: n^2*(3*n-4)*a(n) -(3*n-2)*(30*n^2-50*n+13)*a(n-1) +(9*n^3-30*n^2+29*n-6)*a(n-2) -(3*n-1)*(n-2)^2*a(n-3)=0. - R. J. Mathar, Apr 15 2016 Conjecture: (n^2)*a(n) +(-28*n^2+24*n-3)*a(n-1) +3*(-19*n^2+78*n-77)*a(n-2) +(5*n-12)*(n-3)*a(n-3) -2*(n-3)^2*a(n-4)=0. - R. J. Mathar, Apr 15 2016 0 = (2*x+1)*(x^3-3*x^2+30*x-1)*x*y'' + (6*x^4-8*x^3+51*x^2+60*x-1)*y' + (x-1)*(2*x^2+2*x-7)*y, where y is g.f. - Gheorghe Coserea, Jul 06 2016 MAPLE w := proc(i, j, k) option remember; if i=0 and j=0 and k = 0 then 1; elif i<0 or j<0 or k<0 then 0 else w(i-1, j, k)+w(i, j-1, k)+w(i, j, k-1)+w(i-1, j-1, k-1); end: end: for k from 0 to 10 do lprint(w(k, k, k)):end: # Theodore Kolokolnikov, Jul 04 2010 # second Maple program: a:= proc(n) option remember; `if`(n<3, 51*n^2-45*n+1,      ((3*n-2)*(30*n^2-50*n+13)*a(n-1)+(3*n-1)*(n-2)^2*a(n-3)      -(9*n^3-30*n^2+29*n-6)*a(n-2))/(n^2*(3*n-4)))     end: seq(a(n), n=0..20); # Alois P. Heinz, Sep 22 2013 MATHEMATICA f[n_] := Sum[ Binomial[n, k] Binomial[n + k, k] Binomial[n + 2k, k], {k, 0, n}]; Array[f, 17, 0] (* Robert G. Wilson v *) CoefficientList[Series[HypergeometricPFQ[{1/3, 2/3}, {1}, 27*x/(1 - x)^3]/(1 - x), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 07 2016 *) PROG (Maxima) makelist(sum(binomial(n, k)*binomial(n+k, k)*binomial(n+2*k, k), k, 0, n), n, 0, 12); (PARI) {a(n)=polcoeff(sum(m=0, n, (3*m)!/m!^3*x^m/(1-x+x*O(x^n))^(3*m+1)), n)} \\ Paul D. Hanna, Sep 22 2013 (PARI) a(n) = sum(k = 0, n, binomial(n, k) * binomial(n+k, k) * binomial(n+2*k, k)); \\ Michel Marcus, Jan 14 2016 CROSSREFS Column k = 3 of A229142. Cf. A001850, A082488, A082459, A229049, A229674, A229675, A229676, A229677. Related to diagonal of rational functions: A268545-A268555. Sequence in context: A183403 A127877 A082487 * A063399 A220181 A328813 Adjacent sequences:  A081795 A081796 A081797 * A081799 A081800 A081801 KEYWORD easy,nonn AUTHOR Emanuele Munarini, Apr 23 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 08:41 EST 2021. Contains 349627 sequences. (Running on oeis4.)