%I #25 Sep 21 2024 16:01:35
%S 0,1,1,5,4,2,2,2,2,2,1,1,9,1,1,3,3,2,3,3,2,1,2,2,1,2,1,2,2,1,3,9,1,3,
%T 3,3,4,3,3,4,1,2,2,1,4,1,2,2,1,5,9,1,5,3,3,6,3,3,6,1,2,2,1,6,1,2,2,1,
%U 7,9,1,7,3,3,8,3,3,8,1,2,2,1,8,1,2,2,1,9,9,1,9,3,3,10,3,3,10,1,2,2,1,10,1,2
%N Continued fraction for e/5.
%H Ray Chandler, <a href="/A081749/b081749.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Rec#order_38">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1).
%F First 18 terms: 0, 1, 1, 5, 4, 2, 2, 2, 2, 2, 1, 1, 9, 1, 1, 3, 3, 2.
%F For k >= 1, a(19k)=a(19k+1)=a(19k+16)=a(19k+17)=3; a(19k+2)=a(19k+7)=2k; a(19k+3)=a(19k+6)=a(19k+8)=a(19k+11)=a(19k+14)=1; a(19k+4)=a(19k+5)=a(19k+9)= a(19k+10)=2; a(19k+12)=a(19k+15)=2k+1; a(19k+18)=2k+2.
%t ContinuedFraction[E/5, 100] (* _Paolo Xausa_, Sep 21 2024 *)
%o (PARI) contfrac(exp(1)/5) \\ _Michel Marcus_, Dec 03 2013
%Y Cf. A019762 (decimal expansion).
%Y Cf. A003417 (e), A006083 (e/2), A006084 (e/3), A006085 (e/4).
%K nonn,cofr,easy
%O 1,4
%A _Benoit Cloitre_, Apr 08 2003