login
Triangle T(n,k) read by rows, giving number of bracelets (turnover necklaces) with n beads of k colors (n >= 1, 1 <= k <= n).
19

%I #74 Feb 05 2024 14:20:49

%S 1,1,3,1,4,10,1,6,21,55,1,8,39,136,377,1,13,92,430,1505,4291,1,18,198,

%T 1300,5895,20646,60028,1,30,498,4435,25395,107331,365260,1058058,1,46,

%U 1219,15084,110085,563786,2250311,7472984,21552969,1,78,3210,53764,493131,3037314

%N Triangle T(n,k) read by rows, giving number of bracelets (turnover necklaces) with n beads of k colors (n >= 1, 1 <= k <= n).

%C From _Petros Hadjicostas_, Nov 29 2017: (Start)

%C The formula given below is clear from the programs given in the Maple and Mathematica sections, while the g.f. for column k can be obtained using standard techniques.

%C If we differentiate the column k g.f. m times, then we can get a formula for row m. (For this sequence, we only need to use this row m formula for 1 <= k <= m, but it is valid even for k>m.) For example, to get the formula for row 8, we have T(n=8,k) = d^8/dx^8 (column k g.f.)/8! evaluated at x=0. Here, "d^8/dx^8" means "8th derivative w.r.t. x" of the column k g.f. Doing so, we get T(n=8, k) = (k^6 - k^5 + k^4 + 3*k^3 + 2*k^2 - 2*k + 4)*(k + 1)*k/16, which is the formula given for sequence A060560. (Here, we use this formula only for 1 <= k <= 8.)

%C (End)

%D N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

%H Andrew Howroyd, <a href="/A081720/b081720.txt">Table of n, a(n) for n = 1..1275</a>

%H Yi Hu, <a href="https://hdl.handle.net/10161/23828">Numerical Transfer Matrix Method of Next-nearest-neighbor Ising Models</a>, Master's Thesis, Duke Univ. (2021).

%H Yi Hu and Patrick Charbonneau, <a href="https://arxiv.org/abs/2106.08442">Numerical transfer matrix study of frustrated next-nearest-neighbor Ising models on square lattices</a>, arXiv:2106.08442 [cond-mat.stat-mech], 2021, cites the 4th column.

%F See Maple code.

%F From _Petros Hadjicostas_, Nov 29 2017: (Start)

%F T(n,k) = ((1+k)*k^{n/2}/2 + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is even, and = (k^{(n+1)/2} + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is odd.

%F G.f. for column k: (1/2)*((k*x+k*(k+1)*x^2/2)/(1-k*x^2) - Sum_{n>=1} (phi(n)/n)*log(1-k*x^n)) provided we chop off the Taylor expansion starting at x^k (and ignore all the terms x^n with n<k).

%F (End)

%F 2*n*T(n,k) = A054618(n,k)+n*(1+k)^(n/2)/2 if n even, = A054618(n,k)+n*k^((n+1)/2) if n odd. - _R. J. Mathar_, Jan 23 2022

%e 1; (A000027)

%e 1, 3; (A000217)

%e 1, 4, 10; (A000292)

%e 1, 6, 21, 55; (A002817)

%e 1, 8, 39, 136, 377; (A060446)

%e 1, 13, 92, 430, 1505, 4291; (A027670)

%e 1, 18, 198, 1300, 5895, 20646, 60028; (A060532)

%e 1, 30, 498, 4435, 25395, 107331, 365260, 1058058; (A060560)

%e ...

%e For example, when n=k=3, we have the following T(3,3)=10 bracelets of 3 beads using up to 3 colors: 000, 001, 002, 011, 012, 022, 111, 112, 122, and 222. (Note that 012 = 120 = 201 = 210 = 102 = 021.) _Petros Hadjicostas_, Nov 29 2017

%p A081720 := proc(n, k)

%p local d, t1;

%p t1 := 0;

%p if n mod 2 = 0 then

%p for d from 1 to n do

%p if n mod d = 0 then

%p t1 := t1+numtheory[phi](d)*k^(n/d);

%p end if;

%p end do:

%p (t1+(n/2)*(1+k)*k^(n/2)) /(2*n) ;

%p else

%p for d from 1 to n do

%p if n mod d = 0 then

%p t1 := t1+numtheory[phi](d)*k^(n/d);

%p end if;

%p end do;

%p (t1+n*k^((n+1)/2)) /(2*n) ;

%p end if;

%p end proc:

%p seq(seq(A081720(n,k),k=1..n),n=1..10) ;

%t t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 13 2012, after Maple, updated Nov 02 2017 *)

%t Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n,k,Dihedral],{k,1,n}],{n,1,8}]//Grid (* _Geoffrey Critzer_, Oct 07 2012, after code by _T. D. Noe_ in A027671 *)

%Y Cf. A321791 (extension to n >= 0, k >= 0).

%Y Cf. A081721 (diagonal), A081722 (row sums), column sequences k=2..6: A000029, A027671, A032275, A032276, A056341.

%K nonn,tabl

%O 1,3

%A _N. J. A. Sloane_, based on information supplied by _Gary W. Adamson_, Apr 05 2003

%E Name edited by _Petros Hadjicostas_, Nov 29 2017