login
A081687
a(n) = 8^n - 7^n - 6^n - 5^n + 3*4^n.
2
1, 2, 2, 20, 542, 8132, 94502, 964700, 9138782, 82619732, 724180502, 6213565580, 52507598222, 438786732932, 3636161064902, 29939329241660, 245281233244862, 2001531240407732, 16280816416067702, 132088684297864940, 1069381010972414702, 8642425579112444132, 69743202133180068902
OFFSET
0,2
COMMENTS
Binomial transform of A081686.
FORMULA
G.f.: -(2456*x^4-1400*x^3+297*x^2-28*x+1)/((4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)). - Colin Barker, Aug 12 2012
From Elmo R. Oliveira, Sep 12 2024: (Start)
E.g.f.: exp(4*x)*(exp(4*x) - exp(3*x) - exp(2*x) - exp(x) + 3).
a(n) = 30*a(n-1) - 355*a(n-2) + 2070*a(n-3) - 5944*a(n-4) + 6720*a(n-5) for n > 4. (End)
CROSSREFS
Sequence in context: A350466 A184717 A134046 * A082811 A377251 A014353
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 30 2003
EXTENSIONS
a(20)-a(22) from Elmo R. Oliveira, Sep 12 2024
STATUS
approved