login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081662 Partial sums of n + Fibonacci(n+1). 2
1, 3, 7, 13, 22, 35, 54, 82, 124, 188, 287, 442, 687, 1077, 1701, 2703, 4316, 6917, 11116, 17900, 28866, 46598, 75277, 121668, 196717, 318135, 514579, 832417, 1346674, 2178743, 3525042, 5703382, 9227992, 14930912, 24158411, 39088798 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

W. Kuszmaul, Fast Algorithms for Finding Pattern Avoiders and Counting Pattern Occurrences in Permutations, arXiv preprint arXiv:1509.08216 [cs.DM], 2015-2017.

Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).

FORMULA

a(n) = (1 - 2*sqrt(5)/5)*(sqrt(5)/2 - 1/2)^n*(-1)^n + (sqrt(5)/2 + 1/2)^n*(2*sqrt(5)/5 + 1) + (n^2 + n - 2)/2.

G.f.: (x^3 + x - 1)/((1-x)^3*(x^2 + x - 1)).

Row sums of triangle A132923, = binomial transform of (1, 2, 2, 0, 1, -1, 2, -3, 5, -8, ...). - Gary W. Adamson, Sep 05 2007

a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5); a(0)=1, a(1)=3, a(2)=7, a(3)=13, a(4)=22. - Harvey P. Dale, Nov 19 2011

MATHEMATICA

Accumulate[Table[Total[{n, Fibonacci[n+1]}], {n, 0, 40}]] (* or *) LinearRecurrence[ {4, -5, 1, 2, -1}, {1, 3, 7, 13, 22}, 41] (* Harvey P. Dale, Nov 19 2011 *)

CROSSREFS

Cf. A081659, A000045.

Cf. A132923.

Sequence in context: A253896 A002623 A173196 * A091652 A334163 A291546

Adjacent sequences:  A081659 A081660 A081661 * A081663 A081664 A081665

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Mar 26 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 8 18:44 EDT 2020. Contains 335524 sequences. (Running on oeis4.)