login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081625 a(n) = 2*5^n - 3^n. 6
1, 7, 41, 223, 1169, 6007, 30521, 154063, 774689, 3886567, 19472201, 97479103, 487749809, 2439811927, 12202248281, 61020807343, 305132734529, 1525749766087, 7629007110761, 38145810394783, 190731376496849 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A016516. Inverse binomial transform of A081626.

Row sums of the triangle of 2^n terms shown in A178590 appears to = A081625. - Gary W. Adamson, May 29 2010

Binomial transform of A006516: (1, 6, 28, 120, 496, ...). - Gary W. Adamson, May 31 2010

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (8,-15).

FORMULA

a(n) = 8*a(n-1) - 15*a(n-2), a(0)=1, a(1)=7.

G.f.: (1-x)/((1-3*x)(1-5*x)).

E.g.f. 2*exp(5*x) - exp(3*x).

a(n) = Sum_{k=0..n} A125185(n,k)*3^k. - Philippe Deléham, Feb 26 2012

MATHEMATICA

CoefficientList[Series[(1 - x) / ((1 - 3 x) (1 - 5 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 09 2013 *)

LinearRecurrence[{8, -15}, {1, 7}, 30] (* Harvey P. Dale, Oct 14 2013 *)

PROG

(MAGMA) [2*5^n-3^n: n in [0..25]]; // Vincenzo Librandi, Aug 09 2013

CROSSREFS

Cf. A178590, A006516.

Sequence in context: A168584 A191010 A239041 * A144635 A097165 A152268

Adjacent sequences:  A081622 A081623 A081624 * A081626 A081627 A081628

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Mar 25 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 12:29 EST 2020. Contains 338639 sequences. (Running on oeis4.)