login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081601 Numbers n such that 3 does not divide Sum_{k=0..n} binomial(2k,k) = A006134(n). 5
0, 3, 9, 12, 27, 30, 36, 39, 81, 84, 90, 93, 108, 111, 117, 120, 243, 246, 252, 255, 270, 273, 279, 282, 324, 327, 333, 336, 351, 354, 360, 363, 729, 732, 738, 741, 756, 759, 765, 768, 810, 813, 819, 822, 837, 840, 846, 849, 972, 975, 981, 984, 999, 1002, 1008, 1011 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Apparently a(n)/3 mod 2 = A010060(n-1), the Thue-Morse sequence.

a(n+1) is the smallest number with exactly n+1 partitions into distinct powers of 2 or of 3: A131996(a(n+1)) = n+1 and A131996(m) < n+1 for m < a(n+1). - Reinhard Zumkeller, Aug 06 2007

LINKS

Table of n, a(n) for n=1..56.

R. Stephan, Some divide-and-conquer sequences ...

R. Stephan, Table of generating functions

FORMULA

Apparently a(n) = 3*A005836(n).

G.f.: (x/(1 - x))*Sum_{k>=0} 3^(k+1)*x^(2^k)/(1 + x^(2^k)) (conjecture). - Ilya Gutkovskiy, Jul 23 2017

EXAMPLE

For n=0, A006134(0) = 1, hence 0 is a term.

MATHEMATICA

Select[Range[0, 1020], Mod[Sum[Binomial[2 k, k], {k, 0, #}], 3] != 0 &] (* Michael De Vlieger, Nov 28 2015 *)

PROG

(PARI) for(n=0, 1e3, if(sum(k=0, n, binomial(2*k, k)) % 3 > 0, print1(n, ", "))) \\ Altug Alkan, Nov 26 2015

CROSSREFS

Cf. A005836, A006134, A010060, A083096, A131996.

Equals A089118(n-2) + 1, n > 1.

Sequence in context: A303192 A261957 A261951 * A244018 A261950 A137344

Adjacent sequences:  A081598 A081599 A081600 * A081602 A081603 A081604

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Apr 22 2003

EXTENSIONS

Zero prepended to the sequence and formulas modified accordingly by L. Edson Jeffery, Nov 25 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 22:28 EDT 2018. Contains 316378 sequences. (Running on oeis4.)